- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- python数学建模--非线性规划
diudiu_aaa
数学建模python算法
1.从线性规划到非线性规划本系列的开篇我们介绍了线性规划(LinearProgramming)并延伸到整数规划、0-1规划,以及相对复杂的固定费用问题、选址问题。这些问题的共同特点是,目标函数与约束条件都是线性函数。如果目标函数或约束条件中包含非线性函数,则是非线性规划。通常,非线性问题都比线性问题复杂得多,困难得多,非线性规划也是这样。非线性规划没有统一的通用方法、算法来解决,各种方法都有特定的
- 数学建模笔记—— 非线性规划
liangbm3
数学建模笔记数学建模笔记pythonmatlab非线性规划算法学习优化问题
数学建模笔记——非线性规划非线性规划1.模型原理1.1非线性规划的标准型1.2非线性规划求解的Matlab函数2.典型例题3.matlab代码求解3.1例1一个简单示例3.2例2选址问题1.第一问线性规划2.第二问非线性规划非线性规划非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn)和托克(A.W.T
- ChatGPT-4o:多领域创新应用的智能助手
洋葱蚯蚓
pythonAI数学建模人工智能
ChatGPT-4o:多领域创新应用的智能助手前言1.数学建模:ChatGPT-4o的精确计算1.1专业术语简介1.2代码示例:线性规划问题问题描述代码实现运行结果2.AI绘画:ChatGPT-4o的视觉创造力2.1角色设计示例:火焰魔法师角色描述MJ提示词图片生成2.2火焰魔法师3.海报设计:ChatGPT-4o的创意展现3.1妇女节海报设计3.2保护环境海报设计结论结语前言 在当今这个信息爆
- 数学建模强化宝典(2)linprog
IT 青年
建模强化栈数学建模编程linprog
一、介绍linprog是MATLAB中用于解决线性规划问题的函数。线性规划是一种优化方法,它尝试在满足一组线性等式或不等式约束的条件下,找到一个线性目标函数的最大值或最小值。linprog函数适用于求解形如以下问题的线性规划问题:minimizecTxsubjecttoAx≤bAeqx=beqlb≤x≤ub其中:c是目标函数的系数向量。x是优化变量向量。A和b定义了不等式约束Ax≤b。Aeq和be
- MATLAB智能优化算法-学习笔记(1)——遗传算法求解0-1背包问题【过程+代码】
郭十六弟
算法matlab学习智能优化算法算法思想遗传算法求解0-1背包问题
一、问题描述(1)数学模型(2)模型总结目标函数:最大化背包中的总价值Z。约束条件:确保背包中的物品总重量不超过容量W。决策变量:每个物品是否放入背包,用0或1表示。这个数学模型是一个典型的0-1整数线性规划问题。由于其NP完全性,当问题规模较大时,求解此问题通常需要使用启发式算法(如遗传算法、动态规划、分支定界法等)来找到近似最优解。(3)实例讲解:0-1背包问题模型手动求解过程在0-1背包问题
- python通过Gurobi求解线性规划
vibag
数学建模python算法
文章目录GurobiGurobi中主要的变量类型Gurobi使用基本步骤求解线性规划模型代码实现GurobiGurobi是一款强大的商业数学规划求解器,用于解决线性规划(LP)、整数规划(IP)、混合整数规划(MIP)、二次规划(QP)、非线性规划(NLP)等各种优化问题。它具有高效的求解算法、丰富的功能和友好的用户界面,被广泛应用于学术界和工业界。Gurobi采用了最先进的优化算法和技术,具有出
- 数学建模(优化与控制)
菜鸡中的奋斗鸡→挣扎鸡
数学建模
入门到精通(持续更新):1.线性规划,整数规划,0-1规划(优化与控制)线性规划:整数规划:0-1规划:importpulp #导入PuLP库函数#1.定义一个规划问题MyProbLP=pulp.LpProblem("LPProbDemo1",sense=pulp.LpMaximize)'''pulp.LpProblem是定义问题的构造函数。"LPProbDemo1"是用户定义的问题名(用于输出信
- 果西笔记 | 《管理学》第六章【13/100】
夏果西_Faye
决策是个复杂过程,并非只是以慎重选择为单主体的行为活动。回溯决策理论很有意思,跟人习惯寻找事实依据来验证自我的认知与判断,一个道理。也类似询问他人意见时,内心其实早已有答案。直觉比想象中靠谱,没想到吧~数学无用论该傻眼了,线性规划图解代数还有重要的概率,全都妥妥用上。
- Python cvxpy 安装报错问题
seeseaXi
python开发语言线性代数
学习数学建模的过程中,在线性规划以及非线性规划的章节中,经常会出现要使用cvxpy.solvers模块求解的模型程序,而python当中是没有自带cvxpy这个库的,这意味着我们需要自行安装库。根据网络资料的查询,我得知了:安装cvxpy需要先安装numpy,mkl,scipy,cvxopt,scs,ecos,osqp这几个包至于安装方法,则是通过cmd命令窗口用pip以此安装即可pipinsta
- python零散知识点
#self-discipline#
pythonpython
1.缩进问题:’‘’字符串‘’‘也要和函数运行代码缩进格式保持一致2.cvxpy(线性规划问题的使用)来自pycharm给出的解释:混合整数程序在混合整数程序中,某些变量被限制为布尔值(即0或1)或整数值。您可以通过创建具有只有布尔值或整数值条目的属性的变量来构造混合整数程序:Createsa10-vectorconstrainedtohavebooleanvaluedentries.x=cp.V
- Second-Order Cone Programming(SOCP) 二阶锥规划
Bonennult
凸优化
个人博客Glooow,欢迎各位老师来踩踩文章目录1.二阶锥1.1二阶锥定义1.2二阶锥约束2.优化问题建模3.类似问题转化3.1二次规划3.2随机线性规划4.问题求解1.二阶锥1.1二阶锥定义在此之前,先给出二阶锥的定义。在kkk维空间中二阶锥(Second-ordercone)的定义为Ck={[ut]∣u∈Rk−1,t∈R,∥u∥≤t}\mathcal{C}_{k}=\left\{\left[\
- 《生产调度优化》专栏导读
Lins号丹
生产调度优化生产调度优化
文章分类生产调度优化问题入门相关问题求解调度问题求解效率探讨相关论文解读生产调度优化问题入门文章包含重点简述生产车间调度优化问题两种常用的FJSP模型解析FJSP问题的标准测试数据集的Python代码解析FJSP标准测试数据代码相关问题求解文章求解器问题类型【作业车间调度JSP】通过python调用PuLP线性规划库求解PuLP(开源)作业车间调度JSP【作业车间调度JSP】通过PuLP调用COP
- 混合整数线性规划MILP问题中增添约束的影响
Lins号丹
数学建模数学规划MILP
在混合整数线性规划问题中,我们往往会通过添加约束来限制问题的可行空间,但是约束的添加对模型求解会产生多方面的影响,这取决于具体的问题和模型类型,以下是一些可能造成的影响:约束不起作用,即新增的约束对当前问题的解空间并不特别的改变,这是由于添加的约束没有比其他约束或者其他约束的线性叠加更加有效,要么是过于松的约束,要么是冗余约束,这一般在求解器预处理阶段会被简化;例如:在已知x,y≥0x,y\geq
- 《数学建模》专栏导读
Lins号丹
数学建模数学建模
文章分类相关概念入门快速建模相关混合整数线性规划(MILP)加速技巧数值问题探讨相关问题解决技巧相关概念入门文章相关概念离散优化模型的松弛模型线性松弛问题混合整数线性规划MILP问题中增添约束的影响约束的影响快速建模相关文章求解器涉及步骤利用OR-Tools多样的约束函数快速建模详解CP-SAT(谷歌OR-Tools)快速建立特殊约束OR-Tools约束通过OnlyEnforceIf方法快速建立分
- 运筹学的第一课:单纯形法
ordinary_brony
研究生课堂学习笔记算法经验分享其他
文章目录导读单纯形法简介单纯形法的步骤简介单纯形法的一些说明决策变量基变量工艺常数右端常数空白处θ\thetaθ检验数把其中的一些部分组合起来约束方程典则形式计算步骤判断条件(一)出基和进基矩阵变换判断条件(二)写出结果总结导读运筹学第一课会给你讲线性规划,也就是从初中以来我们拿多元一次方程组做的“旅游叫车问题”、“投资问题”等等。相信在这个时候,每个人的第一印象是:我感觉我行了。然后老师就开始讲
- 巴尔加瓦算法图解【完结】:算法运用(下)
Ashleyxxihf
巴尔加瓦算法图解【完结】算法数据库系统开发语言python
目录布隆过滤器HyperLogLogSHA算法比较文件检查密码Diffie-Hellman密钥交换线性规划结语(完结)布隆过滤器在元素很多的情况下,判断一个元素是否在集合中可以使用布隆过滤器。布隆过滤器(BloomFilter)是1970年由布隆提出的,是一种非常节省空间的概率数据结构,运行速度快,占用内存小,但是有一定的误判率且无法删除元素。它实际上是一个很长的二进制向量和一系列随机映射函数组成
- 分别用线性规划和动态规划求解打家劫舍问题(力扣198)
恩培多克勒的浑天仪
动态规划leetcode算法线性规划
写在前面:1.本人是只挣扎在数模海洋的小可怜,最近同时学线性规划和动态规划,于是就有了这篇博客2.编程使用matlab3.动态规划解法参考数学建模清风动态规划课程https://www.bilibili.com/video/BV1tp4y167c5打家劫舍问题描述:你是一个小偷,现在有一排相邻的房屋等着你去偷窃。这些房子装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警
- 拉格朗日对偶方法求解线性规划
高堂明镜悲白发
算法线性规划
文章目录1线性规划标准形式2构建拉格朗日函数3构建对偶函数4.构建对偶问题5.求解对偶问题6.获得原始问题的最优解1线性规划标准形式让我们考虑一个简单的线性规划问题,并写成标准形式:Minimizef(x1,x2)=2x1+3x2Subjecttog1(x1,x2)=x1+x2−3≤0g2(x1,x2)=−x1+2x2−4≤0\begin{align*}\text{Minimize}\quad&f
- 线性规划计算工具Lingo
赤沙咀菜虚坤
教程:https://wenku.baidu.com/view/b108344e1a37f111f0855b5e.htmlhttps://wenku.baidu.com/view/a55bf6310b4c2e3f5727634e.html编译(Slove)快捷键:ctrl+U返回编码区(Sendtoback)1、按ctrl+鼠标中键滑动控制字体大小2、分号结尾3、空格无影响,大小写不区分4、乘号*
- 线性规划中的对偶理论与Farkas引理及应用
ariesjzj
算法线性规划对偶理论Farkas引理优化理论
对偶(Duality)理论与Farkas引理是线性规划中非常重要的部分,有着广泛的应用。本文聊一下关于它们的一些理解。文章不重在理论推导,因为任何一本关于优化的书基本都会有单独的章节来阐述相关的证明。以下先分别介绍Duality理论与Farkas引理,再说说它们的联系。Duality理论对偶理论主要由vonNeumann,Gale,Kuhn和Tucker提出。对偶不局限于线性规划。借用【1】p21
- 数学建模 - 线性规划入门:Gurobi + python
Terry_trans
数学建模数学建模python
在工程管理、经济管理、科学研究、军事作战训练及日常生产生活等众多领域中,人们常常会遇到各种优化问题。例如,在生产经营中,我们总是希望制定最优的生产计划,充分利用已有的人力、物力资源,获得最大的经济效益;在运输问题中,我们总是希望设计最优的运输方案,在完成运输任务的前提下,力求运输成本最小等。针对优化问题的数学建模也是数学建模竞赛中一类比较常见的问题,这样的问题常常可以使用数学规划模型进行研究。数学
- 数建--LINGO软件介绍
byzqbgm
数模经验分享其他
LINGO软件介绍一、LINGO基本操作LINGO初印象LINGO窗口LINGO工具栏LINGO模型文件LINGO的运算符算术运算符:用于数与数之间的数学运算(前三个无前面的/)/+/-/*/^(求幂)关系运算符:表示“数与数之间”的大小关系。=)简单程序编写-程序model:title求解线性规划max=2*x1+3*x2;2*x1+x2150.001);!集合元素循坏函数sets;a/1..1
- c语言程序ising算法,算法及编程语言 - 声振论坛 - 振动,动力学,声学,信号处理,故障诊断 - Powered by Discuz!...
什么斯坦
c语言程序ising算法
给一下该书的详细信息吧《运筹学基础》作者:张莹出版社:清华大学出版社出版日期:版次:ISBN:730201669页数:311开本:16开包装:平装原价:¥24.0本书包括运筹学中最基本、应用最广泛的七个部分:线性规划、整数规划、目标规划、非线性规划、动态规划、图与网络分析、决策分析。其中以线性规划、非线性规划为重点。全书七部分共详细介绍了50余种实用算法,配有近百个不同类型、不同解法的例题,还有结
- 运筹学——线性规划
枠成
运筹学数学建模其他
仅供自学使用,各位观众自行参考Reference:中国大学mooc管理运筹学韩伯棠https://wenku.baidu.com/view/2e7891961a37f111f1855b46.html#https://zhuanlan.zhihu.com/p/104697552目录线性规划步骤:主要应用:单纯性法求目标函数值最小的线性规划问题解的最终结果情况单纯形法的灵敏度分析python求解线性规
- Lingo求解线性规划案例4——下料问题
difei1877
凯鲁嘎吉-博客园http://www.cnblogs.com/kailugaji/造纸厂接到定单,所需卷纸的宽度和长度如表卷纸的宽度长度579100003000020000工厂生产1号(宽度10)和2号(宽度20)两种标准卷纸,其长度未加规定。现按定单要求对标准卷纸进行切割,切割后有限长度的卷纸可连接起来达到所需卷纸的长度。问如何安排切割计划以满足定单需求而使切割损失最小?解:为了满足定单要求和使
- 线性规划问题
举目沧桑
算法
线性规划问题:将约束条件及目标函数都是决策变量的线性函数的规划问题称为线性规划问题一般线性规划问题的描述:为了解决这类问题,首先需要确定问题的决策变量:然后确定问题的目标,并将目标表示为决策变量的线性函数;最后找出问题的所有约束条件,并将其表示为决策变量的线性方程或不等式。假定线性规划问题中含n个决策变量,分别用xj(j=1,…,n)表示。在目标函数中。xj的系数为cj。xj的取值受m项资源的限制
- 运筹学代码基础(python)
CCC_bi
程序题解法python开发语言
运筹学基础python基础操作字典线性规划问题求解例题建模问题的矩阵表示决策变量取值受限0和1最小生成树问题最小路径问题python基础操作加减法和输出0p1=987654321p2=123456789print(p1+
- matlab基础语法总结
勇敢nn
数学建模matlab开发语言
文章目录1.界面认识2.变量命名3.数据类型4.矩阵构造和四则运算5.程序结构6.二维平面绘图7.三维立体绘图8.线性规划9.积分1.界面认识命令行输入clc:清除命令行窗口命令行输入clearall:清除右侧工作区%:注释代码2.变量命名区分大小写以字母开头,可以使用下划线3.数据类型数字:abs()字符与字符串:字符串用单引号、char()、length()矩阵A=[123;456;789]B
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&