- 从0开始学习计算机视觉--Day04--线性分类
Chef_Chen
学习计算机视觉分类
从宏观来看,卷积网络可以看做是由一个个不同的神经网络组件组合而成,就像积木一样通过不同类型的组件搭建形成,其中线性分类器是一个很重要的组件,在很多卷积网络中都有用到,所以了解清楚它的工作原理对我们后续的学习会有很大的帮助。线性分类器是参数模型中最简单,最基础的例子,下面我们用输入图片输出图片分类的模型的例子来更进一步地了解它。首先,我们输入一张图片到模型中,输入后我们就会得到f(x,W),x指的是
- 第十二课:大白话教你什么是感知机
顽强卖力
大数据数据挖掘python算法数据分析
感知机:神经网络的"幼稚园小朋友"一:感知机是啥?——会画线的智能铅笔1.1最简单的神经网络想象你教小朋友分类红蓝积木:感知机就像小朋友第一次尝试画线分开它们画歪了就擦掉重画,直到完全分开本质:一个会自动调整的线性分类器1.2感知机的三件套输入层:接收特征(如积木的颜色值、形状值)权重:每个特征的重要性(红色比形状更重要?)激活函数:决定是否"开火"(要不要喊"这是蓝积木!")类比:感知机就像个吃
- 北航6系研究生机器学习期末考试题2024回忆版
柳_成林
算法人工智能
已经考完过了好几天了,决定来造福一下学弟学妹,尽可能回忆一下,顺序并不准确1.计算两种贝叶斯决策给出相关数据第一问:根据最小错误贝叶斯决策计算第二问:根据最小风险贝叶斯决策计算PPT有例题,第2章2.混淆矩阵第一问,写出混淆矩阵,解释Precison,Recall是如何计算的第二问,介绍给出的几种分类模型,我记得有线性分类模型,svm,感知机准则,逻辑回归第三问,好像是解释svm和线性分类器的区别
- 周志华《机器学习》——第六章、支持向量机
106106106
支持向量机机器学习人工智能
支持向量机(SupportVectorMachine,简称SVM)是一种经典的二分类模型,基本模型定义为特征空间中最大间隔的线性分类器,其学习的优化目标是间隔最大化,因此支持向量机本身可以转化为一个凸二次规划求解的问题。公式推导太麻烦,下面链接写得非常详细,有空再详细理解,先理解概念。存个链接【机器学习】支持向量机SVM(非常详细)-知乎
- CCF CSP 历年真题 C语言版 满分代码集合 (至2021.9 持续更新中
JY_0329
CCFc语言开发语言cspccf算法
CCFCSP历年真题C语言版满分代码集合(全部原创)2021-9-1数组推导2021-9-2非零段划分2021-4-1灰度直方图2021-4-2领域均值2020-12-1期末预测之安全指数2020-12-2期末预测之最佳阈值2020-9-1称检测点查询2020-9-2风险人群筛查2020-6-1线性分类器2020-6-2稀疏向量2019-12-1报数2019-12-2回收站选址2019-9-1小明
- XGBoost常见面试题(五)——模型对比
月亮月亮要去太阳
机器学习经验分享
XGBoost与GBDT的区别机器学习算法中GBDT和XGBOOST的区别有哪些?-知乎基分类器:传统GBDT以CART树作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。导数:传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。同时xgboo
- 支持向量机——SVM
big_matster
周志华机器学习支持向量机算法
支持向量机支持向量机是一种经典的二分类模型,基本模型定义为特征空间中的最大间隔的线性分类器,其学习的优化目标便是间隔最大化,因此,支持向量机本身可以转换一个凸二次规划求解问题。函数间隔和几何间隔对于二分类学习,假设现在的数据是线性可分的,这时分类学习最基本的想法就是找到一个合理的超平面,该超平面能够将不同类别的样本分开,类似于二维平面使用ax+by+c=0ax+by+c=0ax+by+c=0来表示
- 用TensorFlow.NET搭建一个全连接神经网络
chiyong7717
人工智能c#python
在本文中,我们将学习如何在C#中构建神经网络模型计算图。与线性分类器相比,神经网络的关键优势在于它可以分离不可线性分离的数据。我们将实现此模型来对MNIST数据集的手写数字图像进行分类。我们要构建的神经网络的结构如下。MNIST数据的手写数字图像有10个类(从0到9)。该网络具有2个隐藏层:第一层具有200个隐藏单元(神经元),第二层具有10个神经元(称为分类器层)。让我们一步一步地用代码来实现:
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- 人工智能与机器学习原理精解【1】
叶绿先锋
基础数学与应用数学神经网络人工智能深度学习
文章目录Rosenblatt感知器感知器基础收敛算法算法概述算法步骤关键点说明总结C++实现要点代码参考文献Rosenblatt感知器感知器基础感知器,也可翻译为感知机,是一种人工神经网络。它可以被视为一种最简单形式的前馈式人工神经网络,是一种二元线性分类器。Rosenblatt感知器建立在一个非线性神经元上,但是它只能完成线性分类硬限幅与超平面局部诱导域v=∑i=1mwixi+b从上面公式看来,
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- 【机器学习笔记】11 支持向量机
RIKI_1
机器学习机器学习笔记支持向量机
支持向量机(SupportVectorMachine,SVM)支持向量机是一类按监督学习(supervisedlearning)方式对数据进行二元分类的广义线性分类器(generalizedlinearclassifier),其决策边界是对学习样本求解的最大边距超平面(maximum-marginhyperplane)。与逻辑回归和神经网络相比,支持向量机,在学习复杂的非线性方程时提供了一种更为清
- CSP-202006-1-线性分类器
LOST P
算法c++
CSP-202006-1-线性分类器解题思路通过比较第一个训练数据点的类别和直线函数值的正负来确定标准类别和标准函数值的正负。循环遍历训练数据中的每个点,计算直线函数值并与标准函数值比较,以确定该点所在的类别。如果当前点的类别与标准类别一致,但直线函数值的正负与标准函数值不一致,或者当前点的类别与标准类别不一致,但直线函数值的正负与标准函数值一致,则更新isYes为0,表示该直线不能完美分开A、B
- 机器学习(machine learning)大合集
AI信仰者
1、线性分类器怎么理解呢?我们可以把此分类器理解为线性空间的划分,最简单的,在二维空间上,通过直线的划分。第二个理解可以理解为模板匹配,W的每一行可以看做是其中一个类别的模板。每类得分,实际上是像素点和模板匹配度。模板匹配的方式是内积计算。2、机器学习实战之AdaBoost算法boosting算法系列的基本思想,如下图:adaBoost分类器就是一种元算法分类器,adaBoost分类器利用同一种基
- 【大厂AI课学习笔记】1.4 算法的进步(2)
giszz
学习笔记人工智能学习笔记
关于感知器的兴衰。MORE:感知器的兴衰一、感知器的发明与初期振动在人工智能的历史长河中,感知器(Perceptron)无疑是一个里程碑式的存在。它最初由心理学家FrankRosenblatt在1950年代提出,并在随后的几年中得到了广泛的关注和研究。感知器是一种二元线性分类器,其结构模仿了生物神经元的工作原理,能够通过简单的加权和阈值操作对输入进行分类。感知器的出现引起了巨大的振动。在当时,计算
- 基于支持向量机SVM的图像多分类,SVM的详细原理
神经网络机器学习智能算法画图绘图
支持向量机分类机器学习
目录支持向量机SVM的详细原理SVM的定义SVM理论SVM应用实例,SVM图像多分类代码结果分析展望参考支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为
- 机器学习-逻辑回归【手撕】
alstonlou
机器学习机器学习逻辑回归人工智能
逻辑回归在模式识别问题中,所输出的结果是分类,比如是否是猫,这时候无法通过简单的线性回归来实现问题。同时,与线性回归不同的是,逻辑回归是一种名为回归的线性分类器,并常用于二分类,其本质是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法。要理解逻辑回归,需要先理解线性回归。线性回归线性回归是机器学习中最简单的回归算法,它写作一个几乎人人熟悉的方程:z=\theta_0+\theta_1x
- CCF-CSP真题202006-1《线性分类器》
Macchiato817
CCF-CSP真题c语言算法c++蓝桥杯
题目:C语言解答:#include#defineM1000000intx[M],y[M],u0[M],u1[M],u2[M];intmain(){intn,m,i,j,z;intcountA=0,countB=0;intcount1,count2,count3,count4;chartype[1000];scanf("%d%d",&n,&m);for(i=1;i0){count1++;}if(ty
- 支持向量机(SVM)详解
EasonZzzzzzz
机器学习支持向量机算法机器学习
支持向量机(supportvectormachines,SVM)是一种二分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机。1、线性可分支持向量机与硬间隔最大化1.1、线性可分支持向量机考虑一个二分类问题。假设输入空间与特征空间为两个不同的空间,这两个空间的元素一一对应,并将输入空间的输入映射为特征空间中的特征向量,支持向量机的学习是在特征空间进行的。假设一个
- 支持向量机 Support Vector Machines (SVM) - 1
飞天大肥猫
支持向量机SVM算法机器学习
文章目录1前言1.1SVM的基本思想1.2支持向量机的分类2线性可分支持向量机模型2.1模型概述2.2函数间隔与几何间隔2.3模型推导:硬间隔最大化1前言1.1SVM的基本思想\qquad支持向量机(SupportVectorMachines)的核心思想是通过在特征空间上寻找一个线性超平面,将数据进行二分类且每类数据到超平面的间隔达到最大。其基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最
- 基于支持向量机SVM的风电场NWP数据预测,SVM的详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习算法matlab数据挖掘
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的风电场NWP预测结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性
- 基于支持向量机SVM的采油机故障诊断,Libsvm故障的详细诊断,SVM的详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习算法matlab分类
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的采油机故障识别代码结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线
- 基于粒子群改进的支持向量机SVM的情感分类识别,pso-svm情感分类识别
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习分类matlab人工智能
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的情感分类预测代码结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性
- 基于支持向量机SVM的分类预测,基于SVM的雷击故障识别
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习分类matlab人工智能
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的雷击故障分类预测支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SV
- Perceptron
BigPeter
概括Perceptron学习算法是1957年由Rosenblatt提出的分类算法,是SVM和NeuralNetwork的基础。Perceptron是一个线性分类器,基于误分类准则学习分离超平面的参数(w,b).通过对偶学习法的推导可以通过运用核技巧使Perceptron可以分类非线性数据。模型模型是线性分类器决策函数是参数学习给定线性可分数据集,需要确定Perceptron模型的参数(w,b)将数
- 《scikit-learn》xgboost
星海千寻
机器学习scikit-learnxgboost
XGBoost算法•XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。•XGBoost的基学习器除了可以是CART(这个时候就是GBDT)也可以是线性分类器,而GBDT只能是CART。•XGBoost的目标函数的近似用了二阶泰勒展开,模型优化效果更好。•XGBoost
- 2 感知机
奋斗的喵儿
感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机预测是用学习得到的感知机模型对新输入实例进行分类。2.1感知机模型在这里插入图片描述感知机是一种线性分类模型,属于判别函数。感知机模型的假设空间是定义在特征空间中的所有线性分类模型或线性分类器,即函数集合{f|f(x)=wx+b}.感知机的几何解释:线性方程wx+b=0对应于特征空间Rn中的一个超平面
- 5.逻辑回归 Logistic Regression
宫灵均
机器学习之路
这章感觉也不难,但终究是感觉而已。所有的不难终归都是不熟练,自己只是看着好搞而已,等到自己亲自上手用这个知识敲一段时,说不定又磕磕绊绊了呢。我觉得这章的知识可以用于我的毕业设计,即用某个算法替代论文中的某个算法,提高预测结果。先mark一下。————————————————————————分割线————————————————————————逻辑回归的定义:逻辑回归,是一种名为“回归”的线性分类器
- 机器学习——支持向量机SVM
AAI机器之心
机器学习支持向量机人工智能python深度学习数据挖掘pytorch
1摘要:支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器。支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次规划的问题,其学习算法就为求解凸二次规划的最优化算法序列最小最优化算法(SMO)。关键词:二类分类;间隔最大化;核技巧;凸二次规划;序列最小最优化
- 机器学习 | 多层感知机MLP
rookiexiong
机器学习机器学习人工智能
机器学习|多层感知机MLP1.实验目的自行构造一个多层感知机,完成对某种类型的样本数据的分类(如图像、文本等),也可以对人工自行构造的二维平面超过3类数据点(或者其它标准数据集)进行分类。2.实验内容能给出与线性分类器(自行实现)作对比,并分析原因。用不同数据量,不同超参数,比较实验效果。不许用现成的平台,例如Pytorch,Tensorflow的自动微分工具。实现实验结果的可视化。3.实验环境W
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D