- 2022 年 9 月青少年软编等考 C 语言三级真题解析
南朔 Clancy
青少年软编等考C语言题解集(三级)c语言开发语言c++算法青少年编程题解学习
目录T1.课程冲突T2.42点思路分析T3.最长下坡思路分析T4.吃糖果思路分析T5.放苹果思路分析T1.课程冲突此题为2021年9月三级第一题原题,见2021年9月青少年软编等考C语言三级真题解析中的T1。T2.42点424242是:组合数学上的第555个卡特兰数字符'*'的ASCII\ttASCIIASCII码钼的原子序数666与999的乘积结果的131313进制表示生命、宇宙以及任何事情的终
- 3 > 数据结构与算法 栈与队列
irisart
数据结构与算法(C语言考研期末复习版)c语言数据结构
概览本节总结了栈和队列的基本概念和用法,另外附上栈与队列的基本操作代码(C语言版)。本节适合有C语言基础的初学者、期末复习、考研等方面的用途。栈只允许在一端插入和删除操作的线性表。代码如下特点:先进后出模式(LIFO),只能在栈顶操作。什么是卡特兰数:有n个元素进栈(顺序可以不同),出栈元素不同的排列个数为1n+1C2nn\frac{1}{n+1}C^n_{2n}n+11C2nn。共享栈:两个栈共
- 出栈序列问题——卡特兰数
tanactor
c++刷题c++算法
大家新年快乐啊!!!(^_^)最近在刷题时遇见了这个题是一个关于出栈方案的简单递归问题后来Deepseek了一下才知道该题的背景故留存在此供自己以后查阅以下是关于卡特兰数的相关内容:什么是卡特兰数?卡特兰数(CatalanNumber)是一系列在组合数学中经常出现的自然数。卡特兰数的第n项(记作cn表示许多组合问题的解的数量。卡特兰数的前几项为:C0=1,C1=1,C2=2,C3=5,C4=14,
- 数据结构—栈与队列【顺序存储、链式存储、卡特兰数、优先级队列】
多多钟意你吖
阶段一:数据结构数据结构java算法
个人网站:路遥叶子版权:本文由【路遥叶子】原创、在CSDN首发、需要转载请联系博主如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦想寻找共同成长的小伙伴,请点击【Java全栈开发社区】目录第三章:栈与队列(一)栈、队列和线性表有什么区别?(二)栈一、什么是栈?栈又有什么特性?二、栈都有那些术语操作?三、对于四个元素ABCD它们的出栈的序列有多少种呢?四、卡特兰数五、栈的抽象数据类型
- xwiki html和css,MediaWiki vs. XWiki
Ake阿科
多语言信息技术编程数据库操作系统
140Afar,Abkhazian,Afrikaans,Amharic,Arabic,Assamese,Aymara,Azerbaijani,Bashkir,Byelorussian,Bulgarian,Bihari,Bislama,Bengali;Bangla,Tibetan,Breton,Catalan,Corsican,Czech,Welsh,Danish,German,Bhutani,Gr
- 根据序列推出不同二叉树的个数
ZYT_庄彦涛
数据结构数据结构栈序列
先序序列为a,b,c,d的不同二叉树的个数是()A.13B.14C.15D.16他们有一个卡特兰数公式,就是这么解的:,所以选B上面为正确答案,下面是我个人的理解,不保证正确:对这道题我说一下我的理解。它这个是要确定它的不同的二叉树的个数,所以我们要先了解怎么确定自己画出来的其中一个二叉树算是一个,那么将这些二叉树统计起来就是我们要的答案。那么怎么确定某个二叉树就算一个呢?题目给了我们先序序列,那
- n个节点的二叉树有多少种形态(Catalan数)
garrulousabyss
算法与数据结构基础
【n个节点的二叉树有多少种形态(Catalan数)】分析过程:(1)先考虑只有一个节点的情形,设此时的形态有f(1)种,那么很明显f(1)=1(2)如果有两个节点呢?我们很自然想到,应该在f(1)的基础上考虑递推关系。那么,如果固定一个节点后,左右子树的分布情况为1=1+0=0+1,故有f(2)=f(1)+f(1)(3)如果有三个节点,(我们需要考虑固定两个节点的情况么?当然不,因为当节点数量大于
- 组合数 与卡特兰数
海风许愿
Acm算法c++算法数据结构c++
组合数与卡特兰数1a,b比较小时采用预处理方法,提前将所有的组合数都算出来,到时候直接查表采用的公式是C(a,b)=C(a-1,b)+C(a-1,b-1)原题链接:885.求组合数I-AcWing题库核心代码:for(inti=0;i=1e5时,显然已经不能直接开二维数组打表了,这样会爆数组但是我们可以开两个一维数组,一个存取i的阶乘,一个存取i阶乘的逆元我们可以直接从定义出发C(a,b)=a!/
- Catalan数
林小果1
数据结构与算法(java实现)算法java数据结构
文章目录Catalan数Leecode96不同的二叉搜索树题目描述解题思路代码Leecode22括号生成题目描述代码Catalan数Catalan数是一种组合数学的计数方法,常用于解决一些计数问题,例如括号匹配问题、二叉树的节点问题等。Catalan数的计算公式如下:C0=1,C1=1,C2=2,C3=5,C4=14,C5=42,C6=132,C7=429,C8=1430,C9=4862,C10=
- [leetcode] 22. 括号生成
会飞的大鱼人
leetcode算法dfs数据结构
文章目录题目描述解题方法方法一:dfs遍历java代码方法二:按照卡特兰数的思路递归求出有效括号组合java代码相似题目题目描述数字n代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且有效的括号组合。示例1:输入:n=3输出:["((()))","(()())","(())()","()(())","()()()"]示例2:输入:n=1输出:["()"]提示:1generatePar
- C++ 数论相关题目:卡特兰数应用、快速幂求组合数。满足条件的01序列
伏城无嗔
数论力扣算法笔记c++算法
给定n个0和n个1,它们将按照某种顺序排成长度为2n的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中0的个数都不少于1的个数的序列有多少个。输出的答案对109+7取模。输入格式共一行,包含整数n。输出格式共一行,包含一个整数,表示答案。数据范围1≤n≤105输入样例:3输出样例:5上述描述了本题的公式推导,最终也就是求一个卡特兰数。本题中,求逆元取模的是一个质数,可以用快速幂来求,如果不
- 【数据结构】(C语言版)第三章:栈和队列
_popo_
#数据结构
文章目录一、栈1.顺序栈2.共享栈3.链栈4.练习题二、队列1.顺序存储2.链式存储3.双端队列4.练习题三、栈和队列的应用1.栈在括号匹配时的应用2.栈在表达式求值中的应用3.栈在递归时的应用4.队列——树的层次遍历5.队列——图的层次遍历6.队列——操作系统应用四、特殊矩阵1.压缩存储2.稀疏矩阵一、栈概念:先进后出不同的出栈序列的个数:(卡特兰数)基操:InitStack(&S);//初始化
- 卡特兰数
wean_a23e
之前看算法导论时,讲了给定几个数字,能构造出几种二叉树,当时只想到排列组合的解决方法,极其复杂又不好记,过段时间还忘了。。。。今天看大牛的文章,评论有人提及卡特兰数,了解后才知道这么优雅的解决思路。。卡特兰数前几项卡特兰数前几项为1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,1296
- 卡特兰数
徐子尧
找工作
https://blog.csdn.net/wu_tongtong/article/details/78161211https://blog.csdn.net/wuzhekai1985/article/details/6764858/
- c语言程序设计卡特兰数问题,卡特兰数(Catalan)公式、证明、代码、典例
许小晴
c语言程序设计卡特兰数问题
大佬博客:传送门组合数公式:一、关于卡特兰数卡特兰数是一种经典的组合数,经常出现在各种计算中,其前几项为:1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790,477638700,1767263190,6564120420,24466267020,91482563640,
- c语言程序设计卡特兰数问题,求解圆上2N个点的连线问题(卡特兰数)
2063650662
c语言程序设计卡特兰数问题
题目描述圆上有2n个不同的点,两点之间连成直线段,要求这些线段不能共点.计算出有12个点时共有多少种不同的连线方式.设计C语言函数,intcount(intn),计算并返回圆上有2n个点时的连线方式数量.分析我们可以使用递归的思想来求解这道题.设2n个节点的连线方法种数为(F(n)).如上图(这里取n=4),不妨给所有的点进行编号,然后我们分析第一个节点,发现从1号节点出发可以分为两种情况:第一种
- 什么是卡特兰数及卡特兰数公式推导
wuxiaopengnihao1
sqlite
什么是卡特兰数?明安图数,又称卡塔兰数,英文名Catalannumber,是组合数学中一个常出现于各种计数问题中的数列。以中国蒙古族数学家明安图(1692-1763)和比利时的数学家欧仁·查理·卡塔兰(1814–1894)的名字来命名,其前几项为(从第零项开始):1,1,2,5,14,42,132,429,1430,4862,…卡特兰数的几何意义简单来说,卡特兰数就是一个有规律的数列,在坐标图中可
- 卡特兰数~
qssssss79
算法java开发语言
摘dalao:Ypuyu、长满石楠的荒原卡特兰数是组合数学中一个常在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名。历史上,清代数学家明安图(1692年-1763年)在其《割圜密率捷法》最早用到“卡塔兰数”,远远早于卡塔兰。有中国学者建议将此数命名为“明安图数”或“明安图-卡塔兰数”。即卡特兰数是符合以下公式的一个数列!公式(常见4个):h(n)=h(0)*
- 卡特兰数列编程实现
阿桑-
数据结构与算法
卡特兰(Catalan)数列典型特征有一类如下:1.可以分为两列2.每行从左向右依次递增(减),每列从上向下依次递增(减)/*2-10标准二维表问题问题为:设n是一个正整数。2*n的标准二维表是由正整数1,2,…2n组成的2*n数组,该数组的每行从左到右递增,每列从上到下递增。把数字从小到大进行排序,用0表示对应的数字在第一排,用1表示对应的数字在第二排,那么含有n个0,n个1的序列,就对应一种方
- 卡特兰数列
小宋想站起来
ACM常用序列
卡特兰数列的递推公式如下:h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0)(n>=2)例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5另类递推式:h(n)=h(n-1)*(4*n-2)/(n+1);递推关系的解为:h(n)=C(2n,n)/
- 低配版catalan数(算法)(C语言)
兮于怀
卡特兰数:n个节点最多可组成多少个形态不同的二叉树?n节车厢出栈的可能排列方式有多少种?#includeintmain(){intn;scanf("%d",&n);longlongintt=1,j=2*n;longlonginta,b,i,s=1;for(i=1;i<=n;i++){t=t*j;j--;}for(i=1;i<=n;i++){s=s*i;}a=t/s;b=a/(n+1);printf
- C++实现——卡特兰数列及其应用
浪漫硅谷
algorithm卡特兰数列
/*卡特兰数列的原理及其应用场景令h(1)=1,catalan数满足递归式:h(n)=h(1)*h(n-1)+h(2)*h(n-2)+…+h(n-1)h(1)(其中n>=2)该递推关系的解为:h(n)=c(2n-2,n-1)/n(n=1,2,3,…)1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,3
- C++题目:卡特兰数
SunnyLi1106
C++基础经典例题c++
卡特兰数题目描述这里有一个经典的组合计数问题(这是2009年全国高中数学联赛河北省预赛试题):101010个人去买票,其中555个人每人只有五元纸币一张,另外555个人每人只有十元纸币一张。售票处初始的时候没有任何零钱。如果只关心每个人的持有的纸币面值(例如,持有五元纸币的人视作相同的),那么这些人有几种来买票的先后顺序,使售票处总能顺利找零。这个问题与“从正方网格中,从左下角走最短路到右上角,但
- C++卡特兰数
SkeletonKing233
C++算法卡特兰数
卡特兰数简介卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)的名字来命名。但最早是欧拉在1753年解决凸包划分成三角形问题的时候,推出的Catalan数。初始值:f(0)=f(1)=1递推公式:f(n)=f(0)*f(n-1)+f(1)*f(n-2)+……+f(n-1)*f(0)解决的问题:括号化:P=a1×a2×
- 关于出栈序列的解法总结及卡特兰数的学习(C语言)
紫炁
算法dfs
出栈次序一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?解法1——递归/记忆化搜索考虑用一个二维数组f[i][j]模拟当前情况:i——进栈序列中还有i个待排的数,j——栈中有j个数,f[i][j]的值表示当前i,j情况下有几种输出方案。首先如果f[i][j]有值,直接调用即可(记忆化搜索,节省时间);如果i=0,即序列全部入栈,只有一种输出方法,所以返回1;考虑一般情况,有
- C#,卡特兰数(Catalan number,明安图数)的算法源代码
深度混淆
C#算法演义AlgorithmRecipesC#卡塔兰数入门教程
一、概要卡特兰数(英语:Catalannumber),又称卡塔兰数、明安图数,是组合数学中一种常出现于各种计数问题中的数列。以比利时的数学家欧仁·查理·卡特兰的名字来命名。1730年左右被蒙古族数学家明安图使用于对三角函数幂级数的推导而首次发现,1774年被发表在《割圜密率捷法》。二、卡特兰数的历史1730年,中国清代蒙古族数学家明安图比卡特兰更早使用了卡特兰数,在发现三角函数幂级数的过程中,见《
- 算法学习总结
joker D888
算法与数据结构算法c++ACM数据结构
算法总结文章目录算法总结搜索遍历dfs树的深度树的重心图的连通块划分bfs双端队列bfsbfs图问题迭代加深双向搜索A*IDA*Morris遍历Manacher数论质数判断质数分解质因数埃氏筛法线性筛法约数求N的正约数集合——试除法求1~N每个数的正约数集合——倍除法欧拉函数快速幂快速幂求逆元扩展欧几里得算法斐蜀定理扩展欧几里得算法线性同余方程中国剩余定理卡特兰数低阶数据结构链表邻接表AVL树单调
- Catalan(卡特兰)数
丶lemon7
数据结构
二叉搜索树概念:介绍卡特兰数之前先来了解一些二叉搜索树的概念。比如有一棵树,它根节点比左边节点要大,比右边节点要小,这样的树就称为二叉搜索树。如下图所示:卡特兰数:我们把n个节点所能组成的不同二叉搜索树的个数称为卡特兰数(Catalan数)。接下来我们来看一下不同的卡特兰数是怎么计算出来的。卡特兰数分析:我们把C(n)记为卡特兰数,当节点数为1时,只能组成一种二叉搜索树,因此C(1)=1。C(2)
- AcWing 889. 满足条件的01序列(卡特兰数应用)
ˇasushiro
AcWing算法笔记
满足条件的01序列假设长度为n个序列要求满足题意1的前缀0的个数不能超过1的个数将问题抽象为从(0,0)到(n,n)向上走一个代表这一步对应序列中的值是1,向右走代表序列中的值是0要想满足1的前缀0的数量大于1的数量就需要满足所有路过的途径在y=x这个函数个下面但是如何表达呢?我们采用所有到(n,n)的方案的集合减去越过y=x+1这个直线的方案集合因为越过y=x+1这个直线的方案集合可以表示为从(
- 栈出栈序列问题的探究与思考(卡特兰数)
Pigwantofly
基本算法数据结构与算法算法c++数据结构
目录一、引入二、朴素算法三、卡特兰数的介绍四、卡特兰数的实现1.递推实现卡特兰数2.组合数法实现卡特兰数五、结语一、引入初学数据结构与算法,学到栈的时候,总是会遇到这样一类问题,设输入序列为1,2,3,则经过栈的作用后可以得到()中不同的输出序列。接着就开始一直在想,谁入栈,谁出栈,数字少还好,但数字一多起来,我就开始出现遗漏和重复,所以我只想有没有一种方法,或是说一种公式,可以让我在计算诸如此类
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache