题目链接:http://vjudge.net/problem/viewProblem.action?id=18543
#include<iostream> #include<cmath> #include<cstdio> #include<cstring> #include<vector> using namespace std; const double PI = acos(-1.0); struct Point{//点 double x, y; Point(double _x = 0, double _y = 0):x(_x),y(_y){} }; typedef Point Vector;//向量,从代码看就是点的别名 //向量+向量=向量,点+向量=点 Vector operator + (Vector A, Vector B){ return Vector(A.x+B.x, A.y+B.y); } //点-点=向量 Vector operator - (Point A, Point B){ return Vector(A.x-B.x, A.y-B.y); } //向量*数=向量 Vector operator * (Vector A, double p){ return Vector(A.x*p, A.y*p); } //向量/数=向量 Vector operator / (Vector A, double p){ return Vector(A.x/p, A.y/p); } bool operator < (const Point &a, const Point &b){ return a.x < b.x || (a.x == b.x && a.y < b.y); } const double eps = 1e-10; int dcmp(double x){ if(fabs(x) < eps)return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point &a, const Point &b){ return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } /*基本运算*/ /*点积,判断夹角大小*/ double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; } //长度 double Length(Vector A){ return sqrt(Dot(A, A)); } //夹角大小a.b = |a||b|cosθ double Angle(Vector A, Vector B){ return acos(Dot(A, B) / Length(A) / Length(B)); } /*叉积 右手定则 1、等于两向量构成四边形的面积 2、判断两向量顺逆时针关系,P*Q>0,Q在P左边 等于0(共线) */ double Cross(Vector A, Vector B){ return A.x*B.y - A.y*B.x; } //平行四边形面积 double Area2(Point A, Point B, Point C){ return Cross(B-A, C-A); } //向量旋转 Vector Rotate(Vector A, double rad){ return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad)); } //直线交点(P点和它的方向,Q点和它的方向) Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){ Vector u = P-Q; double t = Cross(w, u) / Cross(v,w); return P + v*t; } //点到直线的距离,用平行四边形面积除以底 double DistanceToLine(Point P, Point A, Point B){ Vector v1 = B - A, v2 = P - A; return fabs(Cross(v1, v2) / Length(v1));//如果不去绝对值,得有向距离 } //点到线段距离 double DistanceToSegment(Point P, Point A, Point B){ if(A == B)return Length(P-A); Vector v1 = B - A, v2 = P - A, v3 = P - B;//向量AB、AP、BP if(dcmp(Dot(v1, v2)) < 0)return Length(v2);//投影在线段AB左边 else if(dcmp(Dot(v1, v3)) > 0)return Length(v3);//投影在线段AB右边 else return fabs(Cross(v1, v2)) / Length(v1);//P点投影在线段上,距离变为求点到直线距离 } //求点在直线上的投影Q Point GetLineProjection(Point P, Point A, Point B){ Vector v = B - A; return A + v*(Dot(v, P-A) / Dot(v, v)); } //线段相交判定 bool OnSegment(Point p, Point a1, Point a2){//先判断一个点是否自一条线段上 return dcmp(Cross(a1-p, a2-p))==0 && dcmp(Dot(a1-p, a2-p))<0; } //规范相交,恰有一个交点,每条线段两个端点都在另一个线段的两侧,即叉积符号不同 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2){ double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1), c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; } Point read_point() { Point p; scanf("%lf%lf",&p.x,&p.y); return p; } int main() { int i, j, n, t; double LA, LB, LC; Point A, B, C, E, D, F; Vector BD,CD,CE,AE,AF,BF; cin>>t; while(t--) { A = read_point(); B = read_point(); C = read_point();//点 LA = Angle(C-A, B-A); LB = Angle(A-B, C-B); LC = Angle(B-C, A-C);//角度 BD = Rotate(C-B, LB/3.0); CD = Rotate(B-C, -LC/3.0); D = GetLineIntersection(B, BD, C, CD); CE = Rotate(A-C, LC/3.0); AE = Rotate(C-A, -LA/3.0); E = GetLineIntersection(C, CE, A, AE); AF = Rotate(B-A, LA/3.0); BF = Rotate(A-B, -LB/3.0); F = GetLineIntersection(B, BF, A, AF); printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n", D.x,D.y,E.x,E.y,F.x,F.y); } return 0; }