SGU 536 Berland Chess(状态压缩 + bfs)

在一个n*m的棋盘上,你有一个white king,然后还有一些(<15)个黑子,每个黑子有一定的攻击范围并且他们不会移动。求吃掉所有黑子的最少步数。

黑子的个数很少,所以用状态压缩来表示棋盘上还剩余哪些黑子。在bfs前先要初始化所有黑子状态下的受攻击的点,这个很恶心。。。初始化完了基本就是无脑搜了吧?

#include<algorithm>
#include<iostream>
#include<cstring>
#include<fstream>
#include<sstream>
#include<cstdlib>
#include<vector>
#include<string>
#include<cstdio>
#include<bitset>
#include<queue>
#include<stack>
#include<cmath>
#include<map>
#include<set>
#define FF(i, a, b) for(int i=a; i<b; i++)
#define FD(i, a, b) for(int i=a; i>=b; i--)
#define REP(i, n) for(int i=0; i<n; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define debug puts("**debug**")
#define LL long long
#define PB push_back
#define MP make_pair
using namespace std;

int dwx[8] = {0, 0, 1, -1, 1, 1, -1, -1};
int dwy[8] = {1, -1, 0, 0, 1, -1, 1, -1};
int dkx[8] = {1, 2, 2, 1, -1, -2, -2, -1};
int dky[8] = {2, 1, -1, -2, -2, -1, 1, 2};

const int SET = (1<<15);
const int maxn = 20;
//can[sta][i][j] = 1 : 当前剩余sta中的黑子 点<i, j>不可走
//vis[sta][i][j] = 1 :当前剩余sta中的黑子时,点<i, j>已走过
bool can[SET][maxn][maxn], vis[SET][maxn][maxn];
char g[maxn][maxn];
//id[x][y] : 点<x, y>的黑子对应的标号
int n, m, sx, sy, tot, id[maxn][maxn];

inline bool outside(int x, int y)
{
    return x<0 || x>=n || y<0 || y>=m;
}
//当前剩余sta中的黑子 点x y是否在sta中
inline bool has(int sta, int x, int y)
{
    return isalpha(g[x][y]) && (sta & (1<<id[x][y]));
}

struct Node
{
    int x, y, st, steps;
    Node(){}
    Node(int a, int b, int c, int d):x(a), y(b), st(c), steps(d){}
};

void bfs()
{
    queue<Node> q; q.push(Node(sx, sy, tot, 0));
    vis[tot][sx][sy] = 1;
    while(!q.empty())
    {
        Node T = q.front(); q.pop();
        if(T.st == 0)
        {
            printf("%d\n", T.steps);
            return ;
        }
        REP(i, 8)
        {
            int tx = T.x + dwx[i], ty = T.y + dwy[i];
            if(outside(tx, ty)) continue;
            //如果当前状态 包含点<tx, ty>的黑子 
            if(has(T.st, tx, ty))
            {
                int sta =  T.st&(tot-(1<<id[tx][ty]));
                if(!vis[sta][tx][ty] && !can[sta][tx][ty])
                //如果可以吃掉它
                {
                    q.push(Node(tx, ty, sta, T.steps+1));
                    vis[sta][tx][ty] = 1;
                }
            }
            else if(!can[T.st][tx][ty])
            {
                int sta = T.st;
                if(!vis[sta][tx][ty])
                {
                    q.push(Node(tx, ty, sta, T.steps+1));
                    vis[sta][tx][ty] = 1;
                }
            }
        }
    }
    puts("-1");
    return ;
}

//初始化所有状态下 会被攻击的点
void init()
{
    FF(s, 1, tot+1)
    {
        //如果s状态下的黑子中 包含g[i][j] 那么更新g[i][j]的攻击范围
        REP(i, n) REP(j, m) if(isalpha(g[i][j]) && (s & (1<<id[i][j])))
        {
            
            if(g[i][j] == 'K')
            {
                REP(k, 8)
                {
                    int tx = i + dkx[k], ty = j + dky[k];
                    if(outside(tx, ty) || has(s, tx, ty)) continue;
                    can[s][tx][ty] = 1;
                }
            }
            else if(g[i][j] == 'B')
            {
                int tx = i, ty = j;
                while(true)
                {
                    tx++, ty++;
                    if(outside(tx, ty) || has(s, tx, ty)) break;
                    can[s][tx][ty] = 1;
                }
                tx = i, ty = j;
                while(true)
                {
                    tx--, ty--;
                    if(outside(tx, ty) || has(s, tx, ty)) break;
                    can[s][tx][ty] = 1;
                }
                tx = i, ty = j;
                while(true)
                {
                    tx++, ty--;
                    if(outside(tx, ty) || has(s, tx, ty)) break;
                    can[s][tx][ty] = 1;
                }
                tx = i, ty = j;
                while(true)
                {
                    tx--, ty++;
                    if(outside(tx, ty) || has(s, tx, ty)) break;
                    can[s][tx][ty] = 1;
                }
            }
            else
            {
                int tx = i, ty = j;
                while(true)
                {
                    tx++;
                    if(tx >= n || has(s, tx, ty)) break;
                    can[s][tx][ty] = 1;
                }
                tx = i, ty = j;
                while(true)
                {
                    tx--;
                    if(tx < 0 || has(s, tx, ty)) break;
                    can[s][tx][ty] = 1;
                }
                tx = i, ty = j;
                while(true)
                {
                    ty++;
                    if(ty>=m || has(s, tx, ty)) break;
                    can[s][tx][ty] = 1;
                }
                tx = i, ty = j;
                while(true)
                {
                    ty--;
                    if(ty<0 || has(s, tx, ty)) break;
                    can[s][tx][ty] = 1;
                }
            }
        }
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    tot = 0;
    REP(i, n)
    {
        scanf("%s", g[i]);
        REP(j, m)
        {
            if(g[i][j] == '*') sx = i, sy = j;
            else if(isalpha(g[i][j])) id[i][j] = tot++;
        }
    }
    if(tot == 0)
    {
        puts("0");
        return 0;
    }
    tot = (1<<tot)-1;

    init(); 
    
    bfs();

    return 0;
}


你可能感兴趣的:(SGU 536 Berland Chess(状态压缩 + bfs))