Face The Right Way
Description Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect. Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the*opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa. Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value ofK. Input
Line 1: A single integer:
N
Lines 2.. N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward. Output
Line 1: Two space-separated integers:
K and
M
Sample Input 7 B B F B F B B Sample Output 3 3 Hint
For
K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)
Source
USACO 2007 March Gold
|
题意是给你n头牛,并告诉你他们头的方向:F代表向前,B代表向后。你有一种能力,就是把区间为k的牛全部翻转,请你输出使得全部牛头朝前的最小翻转次数的次数和此时的K。
思路就是类似关灯问题,我将一头牛翻转偶数次相当于没翻转,翻转奇数次相当于翻一次,这样我就可以通过统计该点目前翻转的次数来判断牛的朝向。于是我们可以枚举K,然后判断K是否符合情况,因为K越大翻转次数一定最小,所以我们扫一遍K就可得到结果。
#include <cstdio> #include <cmath> #include <algorithm> #include <iostream> #include <cstring> #include <map> #include <string> #include <stack> #include <cctype> #include <vector> #include <queue> #include <set> #include <utility> #include <cassert> using namespace std; ///#define Online_Judge #define outstars cout << "***********************" << endl; #define clr(a,b) memset(a,b,sizeof(a)) #define lson l , mid , rt << 1 #define rson mid + 1 , r , rt << 1 | 1 #define mk make_pair #define FOR(i , x , n) for(int i = (x) ; i < (n) ; i++) #define FORR(i , x , n) for(int i = (x) ; i <= (n) ; i++) #define REP(i , x , n) for(int i = (x) ; i > (n) ; i--) #define REPP(i ,x , n) for(int i = (x) ; i >= (n) ; i--) const int MAXN = 100000 + 50; const int MAXS = 10000 + 50; const int sigma_size = 26; const long long LLMAX = 0x7fffffffffffffffLL; const long long LLMIN = 0x8000000000000000LL; const int INF = 0x7fffffff; const int IMIN = 0x80000000; const int inf = 1 << 30; #define eps 1e-8 const long long MOD = 1000000000 + 7; const int mod = 100000; typedef long long LL; const double PI = acos(-1.0); typedef double D; typedef pair<int , int> pii; #define Bug(s) cout << "s = " << s << endl; ///#pragma comment(linker, "/STACK:102400000,102400000") int n , dir[MAXN] , f[MAXN]; int calc(int k) { clr(f ,0 ); int res = 0 , sum = 0; for(int i = 0 ; i + k <= n ; i++) { if((dir[i] + sum) & 1) { res++; f[i] = 1; } sum += f[i]; if(i - k + 1 >= 0) { sum -= f[i - k + 1]; } } for(int i = n - k + 1 ; i < n ; i++) { if((dir[i] + sum) & 1) { return -1; } if(i - k + 1 >= 0) { sum -= f[i - k + 1]; } } return res; } void solve() { int K = 1 , M = n; FORR(k , 1 , n) { int m = calc(k); if(m >= 0 && M > m) { M = m; K = k; } } printf("%d %d\n" , K , M); } int main() { char str[5]; while(~scanf("%d" ,&n)) { for(int i = 0 ; i < n; i++) { scanf("%s" , str); dir[i] = str[0] == 'B'; } // FOR(i ,0 , n)cout << dir[i] << endl; solve(); } return 0; }