博弈论基础知识: 巴什博奕+威佐夫博奕+尼姆博弈(及Staircase);
(一)巴什博奕(Bash Game):
只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.
若(m+1) | n,则先手必败,否则先手必胜。
显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜.因此我们发
现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿
走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜.总之,要保持给对手留下(m+1)的倍数,就能最后获胜.
#include<cstdio>
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int m,n,N,sum=0;
scanf("%d",&N);
while(N--)
{
scanf("%d%d",&m,&n);
sum ^= m % (n + 1);
}
puts(sum?"Win":"Lose");
}
return 0;
}
(二)威佐夫博奕(Wythoff Game):
有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜.奇异局势下先手必败,非奇异局势下先手必胜。这种情况下是颇为复杂的.我们用(ak,bk)(ak ≤bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势.前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(2,20).可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而bk= ak + k,奇异局势有如下三条性质:
1、任何自然数都包含在一个且仅有一个奇异局势中.由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 .所以性质1.成立.
2、任意操作都可将奇异局势变为非奇异局势.事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势.如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势.
3、采用适当的方法,可以将非奇异局势变为奇异局势.假设面对的局势是(a,b),若b = a,则同时从两堆中取走a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk,那么,取走b - bk个物体,即变为奇异局势;如果a = ak , b < bk ,则同时从两堆中拿走ak - ab - ak个物体,变为奇异局势( ab - ak , ab - ak+ b - ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a - ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走b - bj 即可;第二种,a=bj (j < k),从第二堆里面拿走b - aj 即可.从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜.那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:ak =[k(1+√5)/2](下取整), bk= ak + k (k∈N)
必败态 :即(ak,bk)的求法:
#include<stdio.h>
#include<math.h>
double k=(sqrt(5)+1)/2;
int main()
{
int n;
while(~scanf("%d",&n))
{
printf("(0,0)");
for(int i=1; i<=n; i++)
{
int a=k*i;
int b=a+i;
printf("(%d,%d)",a,b);
}
printf("\n");
}
return 0;
}
奇妙的是其中出现了有关黄金分割数的式子:(1+√5)/2 =1.618...,若两堆物品个数分别为x,y(x<y),则k=y-x,再判断x是否等于[(y-x)*( √5+1)/2] 即可得知是否是奇异局势。
奇异局势:先取者输;反之亦然。
#include<stdio.h>
#include<math.h>
int main()
{
int n,m;
double k=(1+sqrt(5.0))/2;
while(~scanf("%d%d",&n,&m))
{
if(n>m)
n=n^m^(m=n);
printf("%d\n",(int ((m-n)*k)==n)?0:1);
}
return 0;
}
(三)尼姆博奕(Nimm Game):
有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜.
这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败.第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0).仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形.计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号xor表示这种运算.这种运算和一般加法不同的一点是1+1=0.先看(1,2,3)的按位模2加的结果:
1 =二进制01
Xor 2 =二进制10
Xor 3 =二进制11
———————
0 =二进制00
对于奇异局势(0,n,n)也一样,结果也是0.任何奇异局势(a,b,c)都有a xor b xor c =0。该结论可以推广至若干堆,都是成立的。如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设a < b< c,我们只要将c 变为a xor b,即可,因为有如下的运算结果: a xor b xor (a xor b)=(a xor a) xor (b xor b)=0 xor 0=0.要将c 变为a xor b,只要从c中减去c-(a xor b)即可.
尼姆博弈模型可以推广到:有n堆若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这个游戏中的变量是堆数k和各堆的物品数N1,N2,……,Nk。对应的组合问题是,确定先手获胜还是后手获胜以及两个游戏人应该如何取物品才能保证自己获胜(获胜策略)
为了进一步理解Nim取物品游戏,我们考查某些特殊情况。如果游戏开始时只有一堆物品,先手则通过取走所有的物品而获胜。现在设有2堆物品,且物品数量分别为N1和N2。游戏者取得胜利并不在于N1和N2的值具体是多少,而是取决于它们是否相等。设N1!=N2,先手从大堆中取走的物品使得两堆物品数量相等,后手再拿,于是,先手以后每次取子的数量与后手相等而最终获胜。但是如果N1= N2,则:后手只要按着先手拿的数量在另一堆中取相等数量的物品,最终获胜者将会是后手。这样,两堆的取子获胜策略就已经找到了。
现在我们如何从两堆的取子策略扩展到任意堆数中呢?
首先来回忆一下,每个正整数都有对应的一个二进制数,例如:57(10) = 111001(2) ,即:57(10)=25+24+23+20。于是,我们可以认为每一堆物品数由2的幂数的子堆组成。这样,含有57枚物品大堆就能看成是分别由数量为25、24、23、20的各个子堆组成。
#include<iostream>
#include<cstdio>
using namespace std;
int num[200024];
int main()
{
int N;
scanf("%d",&N);
while(N--)
{
int n,x=0;
scanf("%d",&n);
for(int i=0; i<n; i++)
{
scanf("%d",&num[i]);
x^=num[i];
}
printf("%s\n",x?"Yes":"No");
}
return 0;
}
(四)Nim Staircase博奕:
这个问题是尼姆博弈的拓展:游戏开始时有许多硬币任意分布在楼梯上,共n阶楼梯从地面由下向上编号为0到n。游戏者在每次操作时可以将楼梯j(1<=j<=n)上的任意多但至少一个硬币移动到楼梯j-1上。游戏者轮流操作,将最后一枚硬币移至地上(0号)的人获胜。
算法:将奇数楼层的状态异或,和为0则先手必败,否则先手必胜。
例题:Poj1704