树状数组在区间求和问题上有大用,其三种复杂度都比线段树要低很多……有关区间求和的问题主要有以下三个模型(以下设A[1..N]为一个长为N的序列,初始值为全0):
(1)“改点求段”型,即对于序列A有以下操作:
【1】修改操作:将A[x]的值加上c;
【2】求和操作:求此时A[l..r]的和。
这是最容易的模型,不需要任何辅助数组。树状数组中从x开始不断减lowbit(x)(即x&(-x))可以得到整个[1..x]的和,而从x开始不断加lowbit(x)则可以得到x的所有前趋。代码:
操作【1】:ADD(x, c);
操作【2】:SUM(r)-SUM(l-1)。
(2)“改段求点”型,即对于序列A有以下操作:
【1】修改操作:将A[l..r]之间的全部元素值加上c;
【2】求和操作:求此时A[x]的值。
这个模型中需要设置一个辅助数组B:B[i]表示A[1..i]到目前为止共被整体加了多少(或者可以说成,到目前为止的所有ADD(i, c)操作中c的总和)。
操作【2】:SUM(r) - SUM(l - 1)。
来自于http://www.cppblog.com/MatoNo1/archive/2011/03/19/142226.aspx
1、概述
树状数组(binary indexed tree),是一种设计新颖的数组结构,它能够高效地获取数组中连续n个数的和。概括说,树状数组通常用于解决以下问题:数组{a}中的元素可能不断地被修改,怎样才能快速地获取连续几个数的和?
2、树状数组基本操作
传统数组(共n个元素)的元素修改和连续元素求和的复杂度分别为O(1)和O(n)。树状数组通过将线性结构转换成伪树状结构(线性结构只能逐个扫描元素,而树状结构可以实现跳跃式扫描),使得修改和求和复杂度均为O(lgn),大大提高了整体效率。
给定序列(数列)A,我们设一个数组C满足
C[i] = A[i–2^k+ 1] + … + A[i]
其中,k为i在二进制下末尾0的个数,i从1开始算!
则我们称C为树状数组。
下面的问题是,给定i,如何求2^k?
答案很简单:2^k=i&(i^(i-1)) ,也就是i&(-i)
下面进行解释:
以i=6为例(注意:a_x表示数字a是x进制表示形式):
(i)_10 = (0110)_2
(i-1)_10=(0101)_2
i xor (i-1) =(0011)_2
i and (i xor (i-1)) =(0010)_2
2^k = 2
C[6] = C[6-2+1]+…+A[6]=A[5]+A[6]
数组C的具体含义如下图所示:
当我们修改A[i]的值时,可以从C[i]往根节点一路上溯,调整这条路上的所有C[]即可,这个操作的复杂度在最坏情况下就是树的高度即O(logn)。另外,对于求数列的前n项和,只需找到n以前的所有最大子树,把其根节点的C加起来即可。不难发现,这些子树的数目是n在二进制时1的个数,或者说是把n展开成2的幂方和时的项数,因此,求和操作的复杂度也是O(logn)。
树状数组能快速求任意区间的和:A[i] + A[i+1] + … + A[j],设sum(k) = A[1]+A[2]+…+A[k],则A[i] + A[i+1] + … + A[j] = sum(j)-sum(i-1)。
下面给出树状数组的C语言实现:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
//求2^k
int
lowbit(
int
t)
{
return
t & ( t ^ ( t - 1 ) );
}
//求前n项和
int
sum(
int
end)
{
int
sum = 0;
while
(end > 0)
{
sum += in[end];
end -= lowbit(end);
}
return
sum;
}
//增加某个元素的大小
void
plus(
int
pos,
int
num)
{
while
(pos <= n)
{
in[pos] += num;
pos += lowbit(pos);
}
}
|
3、扩展——二维树状数组
一维树状数组很容易扩展到二维,二维树状数组如下所示:
C[x][y] = sum(A[i][j])
其中,x-lowbit[x]+1 <= i<=x且y-lowbit[y]+1 <= j <=y
4、应用
(1) 一维树状数组:
参见:http://hi.baidu.com/lilu03555/blog/item/4118f04429739580b3b7dc74.html
(2) 二维树状数组:
一个由数字构成的大矩阵,能进行两种操作
1) 对矩阵里的某个数加上一个整数(可正可负)
2) 查询某个子矩阵里所有数字的和
要求对每次查询,输出结果
5、总结
树状数组最初是在设计压缩算法时发现的(见参考资料1),现在也会经常用语维护子序列和。它与线段树(具体见:数据结构之线段树)比较在思想上类似,比线段树节省空间且编程复杂度低,但使用范围比线段树小(如查询每个区间最小值问题)。
6、参考资料
(1) Binary Indexed Trees:
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=binaryIndexedTrees
(2) 吴豪文章《树状数组》:
http://www.java3z.com/cwbwebhome/article/article19/zip/treearray.zip
(3) 郭炜文章《线段树和树状数组》:
http://poj.org/summerschool/1_interval_tree.pdf
来自于http://dongxicheng.org/structure/binary_indexed_tree/