CodeForces 664A Complicated GCD

A. Complicated GCD
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Greatest common divisor GCD(a, b) of two positive integers a and b is equal to the biggest integer d such that both integers a and bare divisible by d. There are many efficient algorithms to find greatest common divisor GCD(a, b), for example, Euclid algorithm.

Formally, find the biggest integer d, such that all integers a, a + 1, a + 2, ..., b are divisible by d. To make the problem even more complicated we allow a and b to be up to googol, 10100 — such number do not fit even in 64-bit integer type!

Input

The only line of the input contains two integers a and b (1 ≤ a ≤ b ≤ 10100).

Output

Output one integer — greatest common divisor of all integers from a to b inclusive.

Examples
input
1 2
output
1
input
61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576
output
61803398874989484820458683436563811772030917980576
 
         
          
          
          
          
#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

using namespace std;
char a[200];
char b[200];
int main()
{
    scanf("%s%s",a,b);
    int len1=strlen(a);
    int len2=strlen(b);
    if(len1<len2) {printf("1\n");return 0;}
    else{
        for(int i=0;i<len1;i++){
            if(a[i]!=b[i]){
                printf("1\n");return 0;
            }
        }
        for(int i=0;i<len1;i++)
        printf("%c",a[i]);
        cout<<endl;
        return 0;
    }

}



 
         
 
        


你可能感兴趣的:(codeforces)