Time Limit: 2000/1000MS (Java/Others)
Memory Limit: 128000/64000KB (Java/Others)
Submit Statistic Next Problem
Problem Description
Let us consider undirected graph G = {V; E} which has N vertices and M edges. Incidence matrix of this graph is N × M matrix A = {a
i,j}, such that a
i,j is 1 if i-th vertex is one of the ends of j -th edge and 0 in the other case. Your task is to find the sum of all elements of the matrix A
TA.
Input
The first line of the input file contains two integer numbers — N and M (2 ≤ N ≤ 10 000, 1 ≤ M ≤100 000). Then 2*M integer numbers follow, forming M pairs, each pair describes one edge of the graph. All edges are different and there are no loops (i.e. edge ends are distinct).
Output
Output the only number — the sum requested.
Sample Input
Sample Output
Source
Andrew Stankevich Contest 1
Manager
mathlover
显然矩阵太大无法存, 所以要找规律,这题特殊在矩阵是关联矩阵,看图
所以,C[i][j]可以看成是第k行里任意两个元素相乘的和
由于这里的矩阵是01矩阵,所以可以只考虑1 * 1,显然,第k行的和就是点k的度
比如第k行为 1 0 1 1,任意2个元素相乘的和是9,deg[k]^2 == 9
#include<map>
#include<set>
#include<list>
#include<stack>
#include<queue>
#include<vector>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int deg[10010];
int main()
{
int n, m;
while (~scanf("%d%d", &n, &m))
{
memset( deg, 0, sizeof(deg) );
int u, v;
for (int i = 1; i <= m; i++)
{
scanf("%d%d", &u, &v);
deg[u]++;
deg[v]++;
}
long long ans = 0;
for (int i = 1; i <= n; i++)
{
ans += (long long)(deg[i] * deg[i]);
}
printf("%lld\n", ans);
}
return 0;
}