对每个圆二分半径寻找可行的最小半径,然后取最小的一个半径。
对于两圆相交就只要求到两个扇形,然后减去两个全等三角形就行了。
#include<cstdio> #include<iostream> #include<cmath> #include<algorithm> using namespace std; #define pi acos(-1.0) #define eps 1e-8 #define maxn 50 int n; struct point{ double x; double y; double r; }c[maxn]; double dis(point a,point b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } double area(point a,double ra,point b,double rb) { double ans=0; double d=dis(a,b); double temp; if(ra<rb) swap(ra,rb); if(d>=ra+rb)return 0; if(d<=ra-rb)return pi*rb*rb; double angle1=acos((ra*ra+d*d-rb*rb)/2.0/ra/d); double angle2=acos((rb*rb+d*d-ra*ra)/2.0/rb/d); ans-=d*ra*sin(angle1); ans+=angle1*ra*ra+angle2*rb*rb; return ans; } bool cover_half(point a,double ra,point b,double rb) //a是有伞的圆,b是其他圆 { return area(a,ra,b,rb)>=0.5*rb*rb*pi; } bool isok(double r,int k) { for(int i=1;i<=n;i++) { if(!cover_half(c[k],r,c[i],c[i].r)) return false; } return true; } int main() { int cas; scanf("%d",&cas); while(cas--) { scanf("%d",&n); for(int i=1;i<=n;i++) { scanf("%lf%lf%lf",&c[i].x,&c[i].y,&c[i].r); } double ans=5000000; for(int i=1;i<=n;i++){ double l=0.0,r=5000000,mid; while(l+eps<=r) { mid=(l+r)/2; if(isok(mid,i)) r=mid-eps; else l=mid+eps; } ans=min(ans,mid); } printf("%.4lf\n",ans); } return 0; }