- 为量产而设计:自动驾驶车辆激光雷达旋转外参在线标定与异常排除策略
智驾机器人技术前线
高精定位与大规模建图自动驾驶算法机器人
更多精彩内容,请关注公众号:智驾机器人技术前线1.论文信息论文标题:FaultDetectionandExclusionforRobustOnlineCalibrationofVehicletoLiDARRotationParameter作者:JiwonSeok,ChansooKim,PauloResende,BenazouzBradai,andKichunJo作者单位:韩国首尔大学论文链接:ht
- 压缩感知或压缩传感
zhoutongchi
特征提取
由来采样定理(又称取样定理、抽样定理)是采样带限信号过程所遵循的规律,1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等,即:采样率不小于最高频率的两倍(该采样率称作Nyquist采样率)。该理论指
- 压缩感知
weixin_34185320
人工智能python
2019独角兽企业重金招聘Python工程师标准>>>首先,我们必须要认识到这一点,即CS(CompressedSensing)中的Compressed不同于传统信息论和率失真意义上的compression。在CS中,"Compressed"一词更加准确的描述是一个降维采样的过程,而不是在信源编码意义上的“compression”。在CS中,我们是没有关于原始信号像素域的任何信息,仅仅只有观测域信
- 压缩感知——革新数据采集的科学魔法
superdont
计算机视觉人工智能算法计算机视觉opencv系统地学习Pythonpython机器学习
引言:在数字时代,数据以及数据的收集和处理无处不在。压缩感知(CompressedSensing,CS)是一种新兴的数学框架,它挑战了我们传统上对数据采集和压缩的看法,给医学图像、天文观测、环境监测等领域带来了颠覆性的影响。但到底什么是压缩感知,它又为何如此重要呢?本文将为你深入浅出地解释。压缩感知压缩感知(CS)与传统数据压缩的差异:传统信息论告诉我们,数据被采集后通常需要进行压缩以便于存储和传
- c++常考基础知识(1)
不懂编程的小王
c++常考基础知识c++开发语言
一.计算机学重要人物及背景1.必记世界上第一位女程序员-----Ada(阿达或艾达)。戈登·摩尔提出处理器的性能会每两年翻一倍,同时价格下降为原来的一半。冯·诺依曼主导发明了世界上第二台电子计算机。图灵被誉为计算机科学之父,人工智能之父,为纪念他出现了计算机学派的最高奖项——图灵奖。克劳德·香农将热力学中的熵引入信息通信领域,标志着信息论研究的开端。2.选记c++之父:本贾尼·斯特劳斯特卢普3.历
- 对网络流水印的调查
h0l10w
PaperReading网络tor流水印网络安全流量分析
文章信息论文题目:NetworkFlowWatermarking:ASurvey期刊(会议):IEEECommunicationsSurveys&Tutorials时间:2016级别:中科院1区文章链接:https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7570208概述被动流量分析(TrafficAnalysis,TA)有三大缺点:1)它需
- 20191127面对不确定性
zwrockman
社会变化很快,生活有的时候也这样,以为意外事情的出现,保险公司经常会拿明天和意外到底那个会先来做噱头卖保险。但是确实不确定性现在感受越来越强烈。吴军老师在得到的《信息论40讲》里说到不确定性是源于人类的科学发展,通过牛顿的物理定律搞定了连续性的确定性的事情,现在可以开始研究不确定性了,所以现在可以借助信息论的工具来利用信息消除不确定性。当然塔勒布的《黑天鹅》和《反脆弱-从不确定性中收益》肯定是值得
- Python概率建模算法和图示
亚图跨际
数学机器学习Pythonpython算法概率建模统计
要点Python朴素贝叶斯分类器解释概率学习示例Python概率论,衡量一个或多个变量相互依赖性,从数据中学习概率模型参数,贝叶斯决策论,信息论,线性代数和优化Python线性判别分析分类模型,逻辑回归,线性回归,广义线性模型Python结构化数据,图像和序列神经网络朴素贝叶斯分类器示例概率学习在机器学习的广阔领域中,概率学习开辟了自己独特的空间。在统计和概率的驱动下,概率学习侧重于对数据中存在的
- 100天搞定机器学习|Day55 最大熵模型
统计学家
1、熵的定义熵最早是一个物理学概念,由克劳修斯于1854年提出,它是描述事物无序性的参数,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变。熵增是宇宙的基本定律,自然的有序状态会自发的逐步变为混沌状态。1948年,香农将熵的概念引申到信道通信的过程中,从而开创了”信息论“这门学科。香农用“信息熵”来描述随机变量的不确定程度,也即信息量的数学期望。关于信息熵、条件熵、联合熵、
- 人工智能大事记-持续更新中
城市中迷途小书童
20世纪30年代末到50年代,来自数学、心理学、工程学、神经学等学科的科学家开始探讨制造人工大脑的可能性。维纳(Wiener)的控制论、香农(Shannon)提出的信息论,以及图灵(Turing)的计算理论等,为人工智能的出现奠定了基础。BP1986年,GeoffreyHinton提出了前馈算法,一个通过对输入数据按照重要进行排序的精准神经网络。卷积1989年,YannLeCun写了另外一篇旷世之
- 编辑距离算法【莱文斯坦距离、Levenshtein 算法】
Mir_小熊同学
算法leetcode编辑距离算法
文章目录算法概述:应用与其他编辑距离度量的关系问题定义:解析:例题:参考链接:算法概述:在信息论和计算机科学中,莱文斯坦距离是一种两个字符串序列的距离度量。形式化地说,两个单词的莱文斯坦距离是一个单词变成另一个单词要求的最少单个字符编辑数量(如:删除、插入和替换)。莱文斯坦距离也被称做编辑距离,尽管它只是编辑距离的一种,与成对字符串比对紧密相关。一般来说,编辑距离越小,两个串的相似度越大。Leve
- 2023牛客寒假算法基础集训营4-无HIK
云深沐子兮
算法
A:清楚姐姐学信息论结论是越靠近e进制效率越高(第一次知道)当时现场推的,证明如下即证x^y>y^x两边同时取对数,移位得lnx/x>lny/y即证lnx/x的单调性求导即可发现是在e处对整数讨论23附近发现是3,1不参与讨论,3以后是递减。故取3#include#defineintlonglong#defineendl'\n'usingnamespacestd;constintN=1e5+10;
- FINN: 使用神经网络对网络流进行指纹识别
h0l10w
PaperReading神经网络网络网络安全tor流水印
文章信息论文题目:FINN:FingerprintingNetworkFlowsusingNeuralNetworks期刊(会议):AnnualComputerSecurityApplicationsConference时间:2021级别:CCFB文章链接:https://dl.acm.org/doi/pdf/10.1145/3485832.3488010概述有关流量分析的工作分为两类。一些工作重
- 通信基础 4——遍历容量、信道估计、干扰对齐
今天也努力学习的Paul
物理层安全
目录遍历容量/各态历经性容量信道估计干扰对齐无线携能通信遍历容量/各态历经性容量说遍历容量不十分准确,应该叫各态历经性容量(是相对于中断容量说的)首先要理解《信息论》中得香农信道容量,然后结合《随机过程》这门课的内容来理解。通常我们所说的香农容量是在确定性信道条件下得到的信道容量,是一个确定值。但实际上,信道状态是一个不断变化的随机过程,应该采用统计意义上的信道容量来描述。有两种统计意义上的描述方
- 《数学之美》--第一章:文字和语言 vs 数字和信息
mantch
PDF下载第一章文字和语言vs数字和信息数字、文字和自然语言一样,都是信息的载体,它们之间原本有着天然的联系。语言和数学的产生都是为了同一个目的—记录和传播信息。但是,直到半个多世纪前香农博士提出信息论,人们才开始把数学和信息系统自觉地联系起来。信息:自然语言就是信息的一种,其实从最初的动物世界,再到以人类为主导的世界,都是在传播消息,哪怕是发出怪叫声也是一样的。这跟现在的信息传播模型是一样的。i
- 决策树相关知识点以及面试题
mym_74
决策树
文章目录基础知识点熵条件熵联合熵交叉熵信息增益信息增益率Gini指数什么是决策树举例决策树怎么生成的ID3算法C4.5算法和其他模型相比决策树的优点基尼指数(CART算法)决策树的生成最小二乘回归树剪枝一些问题参考基础知识点熵熵是一个物理概念,代表一个系统的混乱程度,在信息论里用于表示一个随机变量不确定性的度量,熵越大,不确定性越高。假设$X$是一个离散分布的随机变量,取值有限,那么的熵可以表示为
- 悲观与乐观—《格局》
小老虎_2ab2
我们的世界并非那么灰暗,即使有挫折,也是暂时性的,积极走向成功,享受成功的喜悦,才是我们应有的生活态度。【悲观的诞生】人过高估计自己的能力,在现实生活中却得不到想要的东西,会产生悲观的情绪。通信和传媒手段越发达,被信息方法的悲观效应就越明显。宣传乐观主义观点论文不仅没人看,甚至无法发表。即从信息论上讲,越是与众不同的说法信息量越大。悲观主义横行,其实来自人性的弱点。悲观主义能减轻悲剧的打击。【悲观
- 今日记事--坚持
星辰大海2021
我昨天读完了信息论,今天开始读,思考快与慢这是我要读完的,坚持下去。我爱孩子,要持续的给她爱和帮助,多夸奖她,这是一个长期过程,我要坚持,不能放弃,不能烦躁,不急不恼不懒不馋再写一遍。我要坚持不闯红灯,虽然路口知道没有摄像头,但是也要遵守交通规则,不能抱着侥幸心理,这个也是我要坚持的。每天晚上我要坚持去跳舞然后去操场散步三圈,这是我要坚持的。我也要坚持把剩下的flash学完,保持好水平,跟娇娇探讨
- 算法:汉明距离 vs 编辑距离 区别
冰凌其
算法区别
1汉明距离在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数。例如,1011101与1001001之间的汉明距离是2。汉明距离是以理查德·卫斯里·汉明的名字命名的,汉明在误差检测与校正码的基础性论文中首次引入这个概念。在通信中累计定长二进制字中发生翻转的错误数据位,所以它也被称为信号距离。汉明重量分析在包括信息论、编码理论、密码学等领域都有应用。它是用来衡量2个二进制码字
- 14.决策树的最终构建
坛城守护者
前面是做了一轮决策,按照信息论的方式,对各特征做了分析,确定了能够带来最大信息增益(注意是熵减)的特征。但仅这一步是不够的,我们需要继续对叶子节点进行同样的操作,直到完成如下的目标:[if!supportLists]1)[endif]程序遍历完所有划分数据集的属性;[if!supportLists]2)[endif]每个分支下的所有实例都具有相同的分类;如果程序已经遍历完所有划分数据集的属性,叶子
- Title: 提升大型语言模型在知识图谱完成中的性能
AI知识图谱大本营
大模型人工智能
基本信息论文题目:MakingLargeLanguageModelsPerformBetterinKnowledgeGraphCompletionMakingLargeLanguageModelsPerformBetterinKnowledgeGraphCompletion(arxiv.org)https://arxiv.org/pdf/2310.06671.pdf作者:YichiZhang,We
- Federated Optimization in Heterogeneous Networks —— Fedprox算法
小小白和纯牛奶
联邦学习论文阅读
FederatedOptimizationinHeterogeneousNetworks1.论文信息论文题目:FederatedOptimizationinHeterogeneousNetworksFedprox算法,plato小项目跑通并理解作者:TianLi,AnitKumarSahu,ManzilZaheer,MaziarSanjabi,AmeetTalwalkar,VirginiaSmit
- 互信息的简单理解
图学习的小张
python
在介绍互信息之前,首先需要了解一下信息熵的概念:所谓信息熵,是指信息论中对一个随机变量不确定性的度量,对于随机变量x,信息熵的定义为:H(x)=−∑xp(x)logp(x)H(x)=-\sum_xp(x)logp(x)H(x)=−x∑p(x)logp(x) 随机变量的熵越大,说明这个变量带给我们的信息越多。 互信息(MI,MutualInformation)表示两个变量之间相互依赖程度的度
- 《医学决策思维课》学习笔记(完)
pzb19841116
数学学习编程相关概率论人工智能机器学习
最近学了得到的《医学决策思维课》,虽然讲的是医生治病的事情,但是里面的道理都是想通的,本质上都是用概率与信息论的方法快速定位问题,对程序故障排查具有一定的借鉴意义。有条件的同学可以直接购买课程,值得一听。发刊词:每一个人都可以做自己难题的医生*遇到问题常犯的两个错误,一类是思考太乱,一类是决策太慢。*医学决策思维的本质,就是要在有限时间和有限信息的条件下,以最快速度、最高效率作出错误率最低的决策。
- 深度学习如何弄懂那些难懂的数学公式?是否需要学习数学?
搬砖班班长
深度学习人工智能学习经验分享
经过1~2年的学习,我觉得还是需要数学有一定认识,重新捡起高等数学、概率与数理、线代等这几本,起码基本微分方程、求导、对数、最小损失等等还是会用到。下面给出几个链接,可以用于平时充电学习。知乎上的:机器学习与深度学习中的数学知识点汇总-SIGAI的文章-知乎https://zhuanlan.zhihu.com/p/81834108推荐书籍:1.高等数学/微积分2.线性代数与矩阵论3.概率论与信息论
- 计算机网络的性能
知向谁边
计算机网络的性能一、性能指标1.速率比特(bit,binarydigit):二进制数字,一个比特不是0就是1比特:信息论中使用的信息量的单位速率(数据率、比特率):(网络技术中)数据的传送速率单位:bit/s(比特每秒)网络的速率:额定速率或标称速率单位换算k(kilo)=10^3=千M(Mega)=10^6=兆G(Giga)=10^9=吉T(Tera)=10^12=太P(Peta)=10^15=
- 密码学理论07:密码哈希函数
untypical_Idealism
哈希算法密码学算法
哈希函数H:{0,1}^∗→{0,1}^n将长字符串映射到短“摘要”,不同的上下文有不同的概念。非密码学的:最初为数据结构(哈希链表)发明的通用/k-wise独立哈希函数。用于信息论加密(一次性MAC)或作为加密方案的构建块(hash然后加密/Carter-WegmanMAC)。【目标:尽可能减少碰撞但不追求抗碰撞】密码学的:哈希函数(抗冲突性、单向性等)广泛用于密码学应用程序(例如数字指纹、区块
- Tensorflow & Keras的loss函数总结
牧世
一、二分类与多分类交叉熵损失函数的理解交叉熵是分类任务中的常用损失函数,在不同的分类任务情况下,交叉熵形式上有很大的差别,二分类任务交叉熵损失函数:多分类任务交叉熵损失函数:这两个交叉熵损失函数对应神经网络不同的最后一层输出,二分类对应sigmoid,多分类对应softmax。它们的交叉熵本质上是一样的:(1)在信息论中,交叉熵是用来描述两个分布的距离的,函数定义为:而神经网络训练的目的就是使预测
- 吴军《信息论》中大数据思维应用之语音识别
高高_02c9
印象最深是吴军老师告诉我们飞机的发明不是仿生鸟类翅膀的工作原理,是了解透了空气动力学,加以运用,才实现了人们飞上蓝天的梦想。我们总说要有梦想,除了做梦,还得有思想,把梦拆解成可解决的问题的思考与想法。这些,也是我作为文科生会迷上吴军博士的课程的原因。生活中,我们总要解决各式各样的问题,我们如何拆解问题,把问题变成关于大数据思维在当下最常见,也是最成功的四类应用。第一类是解决人工智能问题,把那些过去
- Day4学习记录
好好编码
学习网络
一、行业信息1.信息论知识(1)信息的本质:消除世界的不确定性(2)如何度量信息:利用概率的不确定性不确定度——信息熵*类比名人游戏:信息熵即一个问题的最少提问次数。(公式为对数的原因:log(x*y)=logx+logy,log相加就是概率相乘底换为2万物皆为二进制万物皆为bit)(3)capacity-achieving:容量可达channelcapacity(信道容量):单位时间能传达的信息
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后