Just RandomTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1723 Accepted Submission(s): 483
Problem Description
Coach Pang and Uncle Yang both love numbers. Every morning they play a game with number together. In each game the following will be done:
1. Coach Pang randomly choose a integer x in [a, b] with equal probability. 2. Uncle Yang randomly choose a integer y in [c, d] with equal probability. 3. If (x + y) mod p = m, they will go out and have a nice day together. 4. Otherwise, they will do homework that day. For given a, b, c, d, p and m, Coach Pang wants to know the probability that they will go out.
Input
The first line of the input contains an integer T denoting the number of test cases.
For each test case, there is one line containing six integers a, b, c, d, p and m(0 <= a <= b <= 10 9, 0 <=c <= d <= 10 9, 0 <= m < p <= 10 9).
Output
For each test case output a single line "Case #x: y". x is the case number and y is a fraction with numerator and denominator separated by a slash ('/') as the probability that they will go out. The fraction should be presented in the simplest form (with the smallest denominator), but always with a denominator (even if it is the unit).
Sample Input
Sample Output
|
题目
输入 z1 y1 z2 y2 q m
问 z1到y1 中取一个数 再从 z2到y2中取一个数, 两数加和 对q取模 ,其值等于m的几率是多大
很容易知道总的选择,为(y2-z2+1)*(y1-z1+1);
然后可以通过容斥原理来算分子
dd=count(y1,y2,q,m); 这个算的是0-y1和0-y2中的任意两数和对q取模答案是m的方法数 为了好记,dd的意义是大大
xd=count(z1-1,y2,q,m); 接下来三个同上 xd意义是 大小
dx=count(z2-1,y1,q,m);
xx=count(z1-1,z2-1,q,m);
根据容斥原理,可以得到ans=dd-dx-xd+xx
dd因为是从0开始算,所以多算了,-dx-xd可以把有比z1 z2小的那些方法数给去掉,但是去的过程中又多去了 xx,所以把xx加回来
count(__int64 num1,__int64 num2,__int64 q,__int64 m)
count可以自己算,想法就是把两个输入的数按q个数拆分,num1这个数按q来分,可以分成rep1段,剩下m1个数字不足q
__int64 ji(__int64 m1,__int64 m2,__int64 q,__int64 m)
这个函数是计算 有m1个数,比如说m1=4 那第一组数字就是0,1,2,3这四个数字,第二组有m2个数,也是从0开始算的;
这两个数都是比q小的,可以用ji()这个函数,算出符合要求的方法数;
#include<stdio.h> __int64 ji(__int64 m1,__int64 m2,__int64 q,__int64 m) // m1 m2 是个数 m是目标 { __int64 ans=0; __int64 tem=q-1-m;// 最多 if(tem-(q-m1)-(q-m2)>0) ans+=tem-(q-m1)-(q-m2); m1--;// 从有几个数字 变成 这个数字剩下数最大多少 m2--; //没取模 if(m1>=m&&m2>=m) { ans+=(m+1); } else if(m1>=m) { ans+=m2+1; } else if(m2>=m) { ans+=m1+1; } else { if(m1+m2>=m) { ans+=m2-(m-m1)+1; } } return ans; } __int64 count(__int64 num1,__int64 num2,__int64 q,__int64 m)//m < p { __int64 rep1,rep2,ans,m1,m2; rep1=(num1+1)/q; rep2=(num2+1)/q; ans=0; ans+=rep1*rep2*(m+1);//前段不取余 if(m!=q-1)//取余的 ans+=(q-1-m)*rep1*rep2; //尾巴和头的 要加上 m1=(num1+1)%q; // 1 - 剩下的个数 m2=(num2+1)%q; ans+=ji(m1,m2,q,m); ans+=rep2*ji(m1,q,q,m); ans+=rep1*ji(q,m2,q,m); return ans; } __int64 gcd(__int64 n,__int64 m){//最大公因数 __int64 tmp; while(m){tmp=n;n=m;m=tmp%m;} return n; } int main() { __int64 ans,yue,fenmu; __int64 t,z1,y1,z2,y2; __int64 q,m,dd,dx,xd,xx; __int64 cas=1; scanf("%I64d",&t); while(t--) { /*调试用 printf("0-a 0-b 有多少 匹配 相加%q等于m\n"); scanf("%I64d%I64d%I64d%I64d",&z1,&z2,&q,&m); printf("%I64d\n",count(z1,z2,q,m)); __int64 i,j,ans=0; for(i=0;i<=z1;i++) { for(j=0;j<=z2;j++) { if((i+j)%q==m) ans++; } } printf("%I64d\n",ans); */ scanf("%I64d%I64d",&z1,&y1); scanf("%I64d%I64d",&z2,&y2); scanf("%I64d%I64d",&q,&m); dd=count(y1,y2,q,m); xd=dx=xx=0; if(z1!=0) xd=count(z1-1,y2,q,m); if(z2!=0) dx=count(z2-1,y1,q,m); if(z1!=0&&y1!=0) xx=count(z1-1,z2-1,q,m); //printf("dd%I64d dx%I64d xd%I64d xx%I64d\n",dd,dx,xd,xx); fenmu=(y2-z2+1)*(y1-z1+1);//总的 ans=dd-dx-xd+xx; yue=gcd(ans,fenmu); printf("Case #%I64d: ",cas++); if(ans==0) { puts("0/1"); } else printf("%I64d/%I64d\n",ans/yue,fenmu/yue); } return 0; }
Just RandomTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1723 Accepted Submission(s): 483
Problem Description
Coach Pang and Uncle Yang both love numbers. Every morning they play a game with number together. In each game the following will be done:
1. Coach Pang randomly choose a integer x in [a, b] with equal probability. 2. Uncle Yang randomly choose a integer y in [c, d] with equal probability. 3. If (x + y) mod p = m, they will go out and have a nice day together. 4. Otherwise, they will do homework that day. For given a, b, c, d, p and m, Coach Pang wants to know the probability that they will go out.
Input
The first line of the input contains an integer T denoting the number of test cases.
For each test case, there is one line containing six integers a, b, c, d, p and m(0 <= a <= b <= 109, 0 <=c <= d <= 109, 0 <= m < p <= 109).
Output
For each test case output a single line "Case #x: y". x is the case number and y is a fraction with numerator and denominator separated by a slash ('/') as the probability that they will go out. The fraction should be presented in the simplest form (with the smallest denominator), but always with a denominator (even if it is the unit).
Sample Input
Sample Output
|