A quadtree is a representation format used to encode images. The fundamental idea behind the quadtree is that any image can be split into four quadrants. Each quadrant may again be split in four sub quadrants, etc. In the quadtree, the image is represented by a parent node, while the four quadrants are represented by four child nodes, in a predetermined order.
Of course, if the whole image is a single color, it can be represented by a quadtree consisting of a single node. In general, a quadrant needs only to be subdivided if it consists of pixels of different colors. As a result, the quadtree need not be of uniform depth.
A modern computer artist works with black-and-white images of tex2html_wrap_inline34 units, for a total of 1024 pixels per image. One of the operations he performs is adding two images together, to form a new image. In the resulting image a pixel is black if it was black in at least one of the component images, otherwise it is white.
This particular artist believes in what he calls the preferred fullness: for an image to be interesting (i.e. to sell for big bucks) the most important property is the number of filled (black) pixels in the image. So, before adding two images together, he would like to know how many pixels will be black in the resulting image. Your job is to write a program that, given the quadtree representation of two images, calculates the number of pixels that are black in the image, which is the result of adding the two images together.
In the figure, the first example is shown (from top to bottom) as image, quadtree, pre-order string (defined below) and number of pixels. The quadrant numbering is shown at the top of the figure.
The first line of input specifies the number of test cases (N) your program has to process.
The input for each test case is two strings, each string on its own line. The string is the pre-order representation of a quadtree, in which the letter ‘p’ indicates a parent node, the letter ‘f’ (full) a black quadrant and the letter ‘e’ (empty) a white quadrant. It is guaranteed that each string represents a valid quadtree, while the depth of the tree is not more than 5 (because each pixel has only one color).
For each test case, print on one line the text ‘There are X black pixels.’, where X is the number of black pixels in the resulting image.
3
ppeeefpffeefe
pefepeefe
peeef
peefe
peeef
peepefefe
There are 640 black pixels.
There are 512 black pixels.
There are 384 black pixels.
如图所示,可以用四分树来表示一个黑白图像,方法是用根结点表示整幅图像,然后把行列各分成两等分,按照图中的方式编号,从左到右对应4个子结点。如果某子结点对应的区域全黑或者全白,则直接用一个黑结点或者白结点表示;如果既有黑又有白,则用一个灰结点表示,并且为这个区域递归建树。
给出两棵四分树的先序遍历,求二者合并之后(黑色部分合并)黑色像素的个数。p表示中间结点,f表示黑色(full),e表示白色(empty)。
样例输入:
3
ppeeefpffeefe
pefepeefe
peeef
peefe
peeef
peepefefe样例输出:
There are 640 black pixels.
There are 512 black pixels.
#include <iostream>
#include <string>
#include <cstring>
using namespace std;
// 图片宽度
const int len = 32;
// 存储图片信息的二维数组
int img[len][len];
// 像素点数
int ans;
// 统计像素点数
// (row,column)代表像素块左上角
// width代表像素块边长
// 以这三个参数就能将一个像素块涂黑
// 2 1
// 3 4
void quadTreePlus(const string s, int &pos, int row, int column, int width) {
// 获取节点类型
char ch = s[pos++];
// p 表示拥有子节点
if(ch == 'p') {
// 节点1
quadTreePlus(s, pos, row, column + width / 2, width / 2);
// 节点2
quadTreePlus(s, pos, row, column , width / 2);
// 节点3
quadTreePlus(s, pos, row + width / 2, column , width / 2);
// 节点4
quadTreePlus(s, pos, row + width / 2, column + width / 2, width / 2);
} else if(ch == 'f') {
// 只画黑像素
// 画一个以(row,column)为左上角,边长是width的正方形像素块
for(int i = row; i < row + width; i++) {
for(int j = column; j < column + width; j++) {
if(img[i][j] == 0) {
// 涂黑
img[i][j] = 1;
// 计数
ans++;
}
}
}
}
}
int main() {
int N;
cin >> N;
string s;
while(N--) {
memset(img, 0, sizeof(img));
ans = 0;
// 处理相加的两个四叉树
for(int i = 0; i < 2; i++) {
cin >> s;
// 节点当前位置
int pos = 0;
quadTreePlus(s, pos, 0, 0, len);
//draw(s, pos, 0, 0, len);
}
cout << "There are " << ans << " black pixels." << endl;
}
return 0;
}