7.8 二叉树

树形结构是一类重要的非线性数据,树和二叉树是常用的树形结构。

二叉树的概念

◆  1、树的概念
(Tree)是由n(n≥0)个结点组成的有限集合。如n=0,称为 空树

非空树有一个特定的结点,它只有直接后继,没有直接前驱,称之为 (root)。除根以外的其它结点划分为m(m≥0)个互不相交的有限集合T0,T1,……,Tm-1,每个集合又是一棵树,称为 根的子树 (subtree)。每棵子树的根结点有且仅有一个直接前驱,但可以有0个或多个直接后继。这是一个递归方法定义的数据结构,如下图所示。
7.8 二叉树_第1张图片

结点,包括数据项和多个指针项,指针项数目并不固定,且无次序。
结点的度,结点所拥有的子树数量。
叶结点,度为0的结点,如G,I,J,K,L,M,N,O结点。
分支结点,度≥1的结点。
孩子结点,若结点x有子树,则子树根结点即为x的孩子结点。

双亲结点,若结点x有孩子,它即为孩子的双亲。
兄弟结点,同一双亲的结点互称为兄弟。
结点的层次,从根到该结点所经路径上的分支条数。
树的深度,树中结点的层次数。
树的度,树中结点度的最大值。

◆  2、二叉树的概念
二叉树 (Binary Tree)是另一种独立的树形结构。二叉树是结点的一个有限集合,该集合或为空,或是由一个根结点及两棵树分别称为左子树和右子树的(注意有左右之分)互不相交的二叉树组成,其中左右子树分别可以为空子树或均为空树。这也是一个递归的定义。二叉树的特点是:每个结点最多两个孩子,并且子树有左右之分。

二叉树的基本性质:
  • 二叉树的第i层上最多有2i-1(i>=1)个结点;
  • 深度为h的二叉树中最多有2h-1个结点;
  • 在任一棵二叉树中,有n0叶子结点,有n2个度为2的结点,则有n0=n2+1。

◆  3、链式二叉树的结点类模板
先在此定义结点类模板,下一节在其基础上定义二叉树类模板。( 查看源码

二叉树的遍历

◆ 1、 所谓二叉树的遍历 (binary tree traversal),就是遵从某种次序,查巡二叉树的所有结点,每个结点都被访问一次,而且仅访问一次。所谓“访问”指对结点施行某些操作,但不破坏它原来的数据结构。

遍历二叉树有不同次序,规定先左后右,令L,R,V分别代表遍历一个结点的左右子树和访问该结点的操作,有三种方式:  前序遍历 (VLR)、  中序遍历 (LVR)、  后序遍历 (LRV)

◆  2、链式二叉树类模板
template<typename T>class BinaryTree{
        Node<T> *root; //二叉树的根指针
        void InOrder(Node<T> *Current); //中序遍历
        void PreOrder(Node<T> *Current); //前序遍历
        void PostOrder(Node<T> *Current); //后序遍历
        void Insert(const T &data,Node<T> * &b);
                //插入结点,参数为引用!
        void Destory(Node<T> * Current); //删除树
public:
        BinaryTree(){root=NULL;} //空树构造函数
        ~BinaryTree(){Destory(root);} //析构函数
        void Creat(T* data,int n); //建立(排序)二叉树
        void InOrder(){InOrder(root);}
                //中序遍历,公有函数为接口
        void PreOrder(){PreOrder(root);}
                //前序遍历,公有函数为接口
        void PostOrder(){PostOrder(root);}
                //后序遍历,公有函数为接口
};

详细代码参见【 例7.13

二叉排序树

二叉排序树 (Binary Sorting Tree)又称 二叉搜索树 (Binary Search Tree),是一种特殊结构的二叉数,作为一种排序和查找的手段,对应有序表的对半查找,通常亦被称为数表。其定义也是递归的。

二叉排序树的定义:二叉排序树或者是空树或者是具有下述性质的二叉数,其左子树上所有结点的数据值均小于根结点的数据值;右子树上所有结点的数据值均大于等于根结点的数据值,左子树和右子树又各是一棵二叉排序树。

二叉排序树用中序遍历就可以得到由小到大的有序序列,如下图可得有序序列{8,10,11,12,15,16,18,22,24,26,29}。

7.8 二叉树_第2张图片
图 二叉排序树例

二叉排序树的结点插入(可生成排序二叉树)生成算法:对任意一组数据元素序列{a0,a1,a2,…,an-1}。要生成二叉排序树的过程为:
  1. 令a0为二叉树的根结点。
  2. 若a1<a0,令a1为a0左子树的根结点,否则a1为a0右子树的根结点。
  3. 如ai小于根结点,则去左子树,否则去右子树,按此法查找,直到成为空树,则安放此位置。这步就是插入算法。

【例7.15】二叉排序树查找函数。( 查看源码
算法:用中序遍历即可,但递归慢。

你可能感兴趣的:(7.8 二叉树)