- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- python数学建模--非线性规划
diudiu_aaa
数学建模python算法
1.从线性规划到非线性规划本系列的开篇我们介绍了线性规划(LinearProgramming)并延伸到整数规划、0-1规划,以及相对复杂的固定费用问题、选址问题。这些问题的共同特点是,目标函数与约束条件都是线性函数。如果目标函数或约束条件中包含非线性函数,则是非线性规划。通常,非线性问题都比线性问题复杂得多,困难得多,非线性规划也是这样。非线性规划没有统一的通用方法、算法来解决,各种方法都有特定的
- 数学建模笔记—— 非线性规划
liangbm3
数学建模笔记数学建模笔记pythonmatlab非线性规划算法学习优化问题
数学建模笔记——非线性规划非线性规划1.模型原理1.1非线性规划的标准型1.2非线性规划求解的Matlab函数2.典型例题3.matlab代码求解3.1例1一个简单示例3.2例2选址问题1.第一问线性规划2.第二问非线性规划非线性规划非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn)和托克(A.W.T
- ChatGPT-4o:多领域创新应用的智能助手
洋葱蚯蚓
pythonAI数学建模人工智能
ChatGPT-4o:多领域创新应用的智能助手前言1.数学建模:ChatGPT-4o的精确计算1.1专业术语简介1.2代码示例:线性规划问题问题描述代码实现运行结果2.AI绘画:ChatGPT-4o的视觉创造力2.1角色设计示例:火焰魔法师角色描述MJ提示词图片生成2.2火焰魔法师3.海报设计:ChatGPT-4o的创意展现3.1妇女节海报设计3.2保护环境海报设计结论结语前言 在当今这个信息爆
- 数学建模强化宝典(2)linprog
IT 青年
建模强化栈数学建模编程linprog
一、介绍linprog是MATLAB中用于解决线性规划问题的函数。线性规划是一种优化方法,它尝试在满足一组线性等式或不等式约束的条件下,找到一个线性目标函数的最大值或最小值。linprog函数适用于求解形如以下问题的线性规划问题:minimizecTxsubjecttoAx≤bAeqx=beqlb≤x≤ub其中:c是目标函数的系数向量。x是优化变量向量。A和b定义了不等式约束Ax≤b。Aeq和be
- MATLAB智能优化算法-学习笔记(1)——遗传算法求解0-1背包问题【过程+代码】
郭十六弟
算法matlab学习智能优化算法算法思想遗传算法求解0-1背包问题
一、问题描述(1)数学模型(2)模型总结目标函数:最大化背包中的总价值Z。约束条件:确保背包中的物品总重量不超过容量W。决策变量:每个物品是否放入背包,用0或1表示。这个数学模型是一个典型的0-1整数线性规划问题。由于其NP完全性,当问题规模较大时,求解此问题通常需要使用启发式算法(如遗传算法、动态规划、分支定界法等)来找到近似最优解。(3)实例讲解:0-1背包问题模型手动求解过程在0-1背包问题
- python通过Gurobi求解线性规划
vibag
数学建模python算法
文章目录GurobiGurobi中主要的变量类型Gurobi使用基本步骤求解线性规划模型代码实现GurobiGurobi是一款强大的商业数学规划求解器,用于解决线性规划(LP)、整数规划(IP)、混合整数规划(MIP)、二次规划(QP)、非线性规划(NLP)等各种优化问题。它具有高效的求解算法、丰富的功能和友好的用户界面,被广泛应用于学术界和工业界。Gurobi采用了最先进的优化算法和技术,具有出
- 数学建模(优化与控制)
菜鸡中的奋斗鸡→挣扎鸡
数学建模
入门到精通(持续更新):1.线性规划,整数规划,0-1规划(优化与控制)线性规划:整数规划:0-1规划:importpulp #导入PuLP库函数#1.定义一个规划问题MyProbLP=pulp.LpProblem("LPProbDemo1",sense=pulp.LpMaximize)'''pulp.LpProblem是定义问题的构造函数。"LPProbDemo1"是用户定义的问题名(用于输出信
- 果西笔记 | 《管理学》第六章【13/100】
夏果西_Faye
决策是个复杂过程,并非只是以慎重选择为单主体的行为活动。回溯决策理论很有意思,跟人习惯寻找事实依据来验证自我的认知与判断,一个道理。也类似询问他人意见时,内心其实早已有答案。直觉比想象中靠谱,没想到吧~数学无用论该傻眼了,线性规划图解代数还有重要的概率,全都妥妥用上。
- Python cvxpy 安装报错问题
seeseaXi
python开发语言线性代数
学习数学建模的过程中,在线性规划以及非线性规划的章节中,经常会出现要使用cvxpy.solvers模块求解的模型程序,而python当中是没有自带cvxpy这个库的,这意味着我们需要自行安装库。根据网络资料的查询,我得知了:安装cvxpy需要先安装numpy,mkl,scipy,cvxopt,scs,ecos,osqp这几个包至于安装方法,则是通过cmd命令窗口用pip以此安装即可pipinsta
- python零散知识点
#self-discipline#
pythonpython
1.缩进问题:’‘’字符串‘’‘也要和函数运行代码缩进格式保持一致2.cvxpy(线性规划问题的使用)来自pycharm给出的解释:混合整数程序在混合整数程序中,某些变量被限制为布尔值(即0或1)或整数值。您可以通过创建具有只有布尔值或整数值条目的属性的变量来构造混合整数程序:Createsa10-vectorconstrainedtohavebooleanvaluedentries.x=cp.V
- Second-Order Cone Programming(SOCP) 二阶锥规划
Bonennult
凸优化
个人博客Glooow,欢迎各位老师来踩踩文章目录1.二阶锥1.1二阶锥定义1.2二阶锥约束2.优化问题建模3.类似问题转化3.1二次规划3.2随机线性规划4.问题求解1.二阶锥1.1二阶锥定义在此之前,先给出二阶锥的定义。在kkk维空间中二阶锥(Second-ordercone)的定义为Ck={[ut]∣u∈Rk−1,t∈R,∥u∥≤t}\mathcal{C}_{k}=\left\{\left[\
- 《生产调度优化》专栏导读
Lins号丹
生产调度优化生产调度优化
文章分类生产调度优化问题入门相关问题求解调度问题求解效率探讨相关论文解读生产调度优化问题入门文章包含重点简述生产车间调度优化问题两种常用的FJSP模型解析FJSP问题的标准测试数据集的Python代码解析FJSP标准测试数据代码相关问题求解文章求解器问题类型【作业车间调度JSP】通过python调用PuLP线性规划库求解PuLP(开源)作业车间调度JSP【作业车间调度JSP】通过PuLP调用COP
- 混合整数线性规划MILP问题中增添约束的影响
Lins号丹
数学建模数学规划MILP
在混合整数线性规划问题中,我们往往会通过添加约束来限制问题的可行空间,但是约束的添加对模型求解会产生多方面的影响,这取决于具体的问题和模型类型,以下是一些可能造成的影响:约束不起作用,即新增的约束对当前问题的解空间并不特别的改变,这是由于添加的约束没有比其他约束或者其他约束的线性叠加更加有效,要么是过于松的约束,要么是冗余约束,这一般在求解器预处理阶段会被简化;例如:在已知x,y≥0x,y\geq
- 《数学建模》专栏导读
Lins号丹
数学建模数学建模
文章分类相关概念入门快速建模相关混合整数线性规划(MILP)加速技巧数值问题探讨相关问题解决技巧相关概念入门文章相关概念离散优化模型的松弛模型线性松弛问题混合整数线性规划MILP问题中增添约束的影响约束的影响快速建模相关文章求解器涉及步骤利用OR-Tools多样的约束函数快速建模详解CP-SAT(谷歌OR-Tools)快速建立特殊约束OR-Tools约束通过OnlyEnforceIf方法快速建立分
- 运筹学的第一课:单纯形法
ordinary_brony
研究生课堂学习笔记算法经验分享其他
文章目录导读单纯形法简介单纯形法的步骤简介单纯形法的一些说明决策变量基变量工艺常数右端常数空白处θ\thetaθ检验数把其中的一些部分组合起来约束方程典则形式计算步骤判断条件(一)出基和进基矩阵变换判断条件(二)写出结果总结导读运筹学第一课会给你讲线性规划,也就是从初中以来我们拿多元一次方程组做的“旅游叫车问题”、“投资问题”等等。相信在这个时候,每个人的第一印象是:我感觉我行了。然后老师就开始讲
- 巴尔加瓦算法图解【完结】:算法运用(下)
Ashleyxxihf
巴尔加瓦算法图解【完结】算法数据库系统开发语言python
目录布隆过滤器HyperLogLogSHA算法比较文件检查密码Diffie-Hellman密钥交换线性规划结语(完结)布隆过滤器在元素很多的情况下,判断一个元素是否在集合中可以使用布隆过滤器。布隆过滤器(BloomFilter)是1970年由布隆提出的,是一种非常节省空间的概率数据结构,运行速度快,占用内存小,但是有一定的误判率且无法删除元素。它实际上是一个很长的二进制向量和一系列随机映射函数组成
- 分别用线性规划和动态规划求解打家劫舍问题(力扣198)
恩培多克勒的浑天仪
动态规划leetcode算法线性规划
写在前面:1.本人是只挣扎在数模海洋的小可怜,最近同时学线性规划和动态规划,于是就有了这篇博客2.编程使用matlab3.动态规划解法参考数学建模清风动态规划课程https://www.bilibili.com/video/BV1tp4y167c5打家劫舍问题描述:你是一个小偷,现在有一排相邻的房屋等着你去偷窃。这些房子装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警
- 拉格朗日对偶方法求解线性规划
高堂明镜悲白发
算法线性规划
文章目录1线性规划标准形式2构建拉格朗日函数3构建对偶函数4.构建对偶问题5.求解对偶问题6.获得原始问题的最优解1线性规划标准形式让我们考虑一个简单的线性规划问题,并写成标准形式:Minimizef(x1,x2)=2x1+3x2Subjecttog1(x1,x2)=x1+x2−3≤0g2(x1,x2)=−x1+2x2−4≤0\begin{align*}\text{Minimize}\quad&f
- 线性规划计算工具Lingo
赤沙咀菜虚坤
教程:https://wenku.baidu.com/view/b108344e1a37f111f0855b5e.htmlhttps://wenku.baidu.com/view/a55bf6310b4c2e3f5727634e.html编译(Slove)快捷键:ctrl+U返回编码区(Sendtoback)1、按ctrl+鼠标中键滑动控制字体大小2、分号结尾3、空格无影响,大小写不区分4、乘号*
- 线性规划中的对偶理论与Farkas引理及应用
ariesjzj
算法线性规划对偶理论Farkas引理优化理论
对偶(Duality)理论与Farkas引理是线性规划中非常重要的部分,有着广泛的应用。本文聊一下关于它们的一些理解。文章不重在理论推导,因为任何一本关于优化的书基本都会有单独的章节来阐述相关的证明。以下先分别介绍Duality理论与Farkas引理,再说说它们的联系。Duality理论对偶理论主要由vonNeumann,Gale,Kuhn和Tucker提出。对偶不局限于线性规划。借用【1】p21
- 数学建模 - 线性规划入门:Gurobi + python
Terry_trans
数学建模数学建模python
在工程管理、经济管理、科学研究、军事作战训练及日常生产生活等众多领域中,人们常常会遇到各种优化问题。例如,在生产经营中,我们总是希望制定最优的生产计划,充分利用已有的人力、物力资源,获得最大的经济效益;在运输问题中,我们总是希望设计最优的运输方案,在完成运输任务的前提下,力求运输成本最小等。针对优化问题的数学建模也是数学建模竞赛中一类比较常见的问题,这样的问题常常可以使用数学规划模型进行研究。数学
- 数建--LINGO软件介绍
byzqbgm
数模经验分享其他
LINGO软件介绍一、LINGO基本操作LINGO初印象LINGO窗口LINGO工具栏LINGO模型文件LINGO的运算符算术运算符:用于数与数之间的数学运算(前三个无前面的/)/+/-/*/^(求幂)关系运算符:表示“数与数之间”的大小关系。=)简单程序编写-程序model:title求解线性规划max=2*x1+3*x2;2*x1+x2150.001);!集合元素循坏函数sets;a/1..1
- c语言程序ising算法,算法及编程语言 - 声振论坛 - 振动,动力学,声学,信号处理,故障诊断 - Powered by Discuz!...
什么斯坦
c语言程序ising算法
给一下该书的详细信息吧《运筹学基础》作者:张莹出版社:清华大学出版社出版日期:版次:ISBN:730201669页数:311开本:16开包装:平装原价:¥24.0本书包括运筹学中最基本、应用最广泛的七个部分:线性规划、整数规划、目标规划、非线性规划、动态规划、图与网络分析、决策分析。其中以线性规划、非线性规划为重点。全书七部分共详细介绍了50余种实用算法,配有近百个不同类型、不同解法的例题,还有结
- 运筹学——线性规划
枠成
运筹学数学建模其他
仅供自学使用,各位观众自行参考Reference:中国大学mooc管理运筹学韩伯棠https://wenku.baidu.com/view/2e7891961a37f111f1855b46.html#https://zhuanlan.zhihu.com/p/104697552目录线性规划步骤:主要应用:单纯性法求目标函数值最小的线性规划问题解的最终结果情况单纯形法的灵敏度分析python求解线性规
- Lingo求解线性规划案例4——下料问题
difei1877
凯鲁嘎吉-博客园http://www.cnblogs.com/kailugaji/造纸厂接到定单,所需卷纸的宽度和长度如表卷纸的宽度长度579100003000020000工厂生产1号(宽度10)和2号(宽度20)两种标准卷纸,其长度未加规定。现按定单要求对标准卷纸进行切割,切割后有限长度的卷纸可连接起来达到所需卷纸的长度。问如何安排切割计划以满足定单需求而使切割损失最小?解:为了满足定单要求和使
- 线性规划问题
举目沧桑
算法
线性规划问题:将约束条件及目标函数都是决策变量的线性函数的规划问题称为线性规划问题一般线性规划问题的描述:为了解决这类问题,首先需要确定问题的决策变量:然后确定问题的目标,并将目标表示为决策变量的线性函数;最后找出问题的所有约束条件,并将其表示为决策变量的线性方程或不等式。假定线性规划问题中含n个决策变量,分别用xj(j=1,…,n)表示。在目标函数中。xj的系数为cj。xj的取值受m项资源的限制
- 运筹学代码基础(python)
CCC_bi
程序题解法python开发语言
运筹学基础python基础操作字典线性规划问题求解例题建模问题的矩阵表示决策变量取值受限0和1最小生成树问题最小路径问题python基础操作加减法和输出0p1=987654321p2=123456789print(p1+
- matlab基础语法总结
勇敢nn
数学建模matlab开发语言
文章目录1.界面认识2.变量命名3.数据类型4.矩阵构造和四则运算5.程序结构6.二维平面绘图7.三维立体绘图8.线性规划9.积分1.界面认识命令行输入clc:清除命令行窗口命令行输入clearall:清除右侧工作区%:注释代码2.变量命名区分大小写以字母开头,可以使用下划线3.数据类型数字:abs()字符与字符串:字符串用单引号、char()、length()矩阵A=[123;456;789]B
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出