Enemy is weak(树状数组 + 离散化)

E. Enemy is weak
time limit per test
5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The Romans have attacked again. This time they are much more than the Persians but Shapur is ready to defeat them. He says: "A lion is never afraid of a hundred sheep".

Nevertheless Shapur has to find weaknesses in the Roman army to defeat them. So he gives the army a weakness number.

In Shapur's opinion the weakness of an army is equal to the number of triplets i, j, k such that i < j < k and ai > aj > ak where ax is the power of man standing at position x. The Roman army has one special trait — powers of all the people in it are distinct.

Help Shapur find out how weak the Romans are.

Input

The first line of input contains a single number n (3 ≤ n ≤ 106) — the number of men in Roman army. Next line contains n different positive integers ai (1 ≤ i ≤ n, 1 ≤ ai ≤ 109) — powers of men in the Roman army.

Output

A single integer number, the weakness of the Roman army.

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cout (also you may use %I64d).

Sample test(s)
input
3
3 2 1
output
1
input
3
2 3 1
output
0
input
4
10 8 3 1
output
4
input
4
1 5 4 3
output
1

 

       题意:

       给出 N (3 ~ 10 ^ 6)代表有 N 个数(1 ~ 10 ^ 9),求出能组成 i < j < k 且 num [ i ] > num [ j ] > num [ k ] 的序列一共有多少种。

 

       思路:

       树状数组 + 离散化。数最大是 10 ^ 9,而一共只可能出现 10 ^ 6 个数,故可以离散化,给每个数一个对应的编号大小。对于数列中的每一个数,都可能是中间值,如果是中间值的话,则寻找左边大于这个中间值的个数 big [ i ]  和 右边小于这个中间值的个数 small [ i ],最后将所有的 big * small 相加即为答案。维护 small 和 big 的时候,用树状数组维护即可。

 

        AC:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>

using namespace std;

typedef long long ll;

const int MAX = 1000005;

map<int, int> m;
int num[MAX], New[MAX];
int small[MAX], big[MAX];
int bit[MAX];
int nn;

int sum(int i) {
        int s = 0;

        while (i > 0) {
                s += bit[i];
                i -= i & -i;
        }

        return s;
}

void add(int i, int x) {
        while (i <= nn) {
                bit[i] += x;
                i += i & -i;
        }
}

int main() {
        int n;
        scanf("%d", &n);

        for (int i = 1; i <= n; ++i) {
                scanf("%d", &num[i]);
                New[i] = num[i];

        }

        nn = 0;
        sort(New + 1, New + 1 + n);
        for (int i = 1; i <= n; ++i) {
                if (!m[New[i]]) m[New[i]] = ++nn;
        }

        memset(bit, 0, sizeof(bit));
        for (int i = 1; i <= n; ++i) {
                big[i] = sum(nn) - sum(m[ num[i] ]);
                add(m[ num[i] ], 1);
        }

        memset(bit, 0, sizeof(bit));
        for (int i = n; i >= 1; --i) {
                small[i] = sum(m[ num[i] ] - 1);
                add(m[ num[i] ], 1);
        }

        ll res = 0;
        for (int i = 1; i <= n; ++i) {
                res += (ll)small[i] * (ll)big[i];
        }

        printf("%I64d\n", res);

        return 0;
}

 

 

你可能感兴趣的:(树状数组)