RT-DETR 更换主干网络之 ShuffleNetv2 | 《ShuffleNet v2:高效卷积神经网络架构设计的实用指南》
目前,神经网络架构设计多以计算复杂度的间接度量——FLOPs为指导。然而,直接的度量,如速度,也取决于其他因素,如内存访问成本和平台特性。因此,这项工作建议评估目标平台上的直接度量,而不仅仅是考虑失败。在一系列控制实验的基础上,本文得出了一些有效设计网络的实用指南。据此,提出了一种新的体系结构,称为ShuffleNetV2。综合消融实验证明,我们的模型在速度和精度方面是最先进的。论文地址:http