E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
梯度归一化
GAN生成对抗性网络
原理出发点:机器学习中生成模型的问题无监督学习是机器学习和未来人工智能的突破点,生成模型是无监督学习的关键部分特点:不需要MCMC或者变分贝叶斯等复杂的手段,只需要在G和D中对应的多层感知机中运行反向传播或者
梯度
下降算法模型通常使用神经网络
Dirschs
·
2024-02-19 23:19
深度学习
GAN
生成对抗网络
人工智能
神经网络
机器学习中为什么需要
梯度
下降
在机器学习中,
梯度
下降是一种常用的优化算法,用于寻找损失函数的最小值。我们可以用一个简单的爬山场景来类比
梯度
下降的过程。假设你被困在山上,需要找到一条通往山下的路。
华农DrLai
·
2024-02-19 23:16
机器学习
人工智能
大数据
深度学习
算法
数据挖掘
计算机视觉
苏尼特右旗公安局食药环侦大队继续深入开展拜师学艺活动
从适应科学发展、个人提高进步的
梯度
来深刻认识,不学不行,不学无“智”,不学退化;学与不学
巴工
·
2024-02-19 20:56
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践
侧重模型推导细化以及LAC分词实践1.GRU简介GRU(GateRecurrentUnit)门控循环单元,是[循环神经网络](RNN)的变种种,与LSTM类似通过门控单元解决RNN中不能长期记忆和反向传播中的
梯度
等问题
·
2024-02-19 16:10
人工智能自然语言处理数据挖掘
OpenCV-Python学习(九):图像滤波
目录:1.滤波的相关概念2.卷积操作3.平滑操作(低通滤波)均值滤波中值滤波高斯滤波双边滤波4.锐化操作(高通滤波)自定义锐化核USM锐化(UnsharpMask)5.
梯度
操作(高通滤波)Sobel算子
星光下的胖子
·
2024-02-19 16:56
【吴恩达·机器学习】第二章:单变量线性回归模型(代价函数、
梯度
下降、学习率、batch)
博主简介:努力学习的22级计算机科学与技术本科生一枚博主主页:@Yaoyao2024每日一言:勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。——《朗读者》0、声明本系列博客文章是博主本人根据吴恩达老师2022年的机器学习课程所学而写,主要包括老师的核心讲义和自己的理解。在上完课后对课程内容进行回顾和整合,从而加深自己对知识的理解,也方便自己以及后续的同学们复习和回顾。课程地址2022吴恩达
Yaoyao2024
·
2024-02-19 14:41
机器学习
线性回归
学习
Pytorch-SGD算法解析
关注B站可以观看更多实战教学视频:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频(bilibili.com)SGD,即随机
梯度
下降(StochasticGradientDescent),是机器学习中用于优化目标函数的迭代方法
肆十二
·
2024-02-19 14:10
Pytorch语法
yolo
SGD
随机梯度下降
PyTorch使用Tricks:
梯度
裁剪-防止
梯度
爆炸或
梯度
消失 !!
文章目录前言1、对参数的
梯度
进行裁剪,使其不超过一个指定的值2、一个使用的torch.nn.utils.clip_grad_norm_例子3、怎么获得
梯度
的norm4、什么情况下需要
梯度
裁剪5、注意事项前言
梯度
裁剪
JOYCE_Leo16
·
2024-02-19 14:07
计算机视觉
pytorch
python
梯度裁剪
深度学习
神经网络
利用R语言绘制相关性热图
数据示例(
归一化
处理后):install.packages("corrplot")install.packages("ggplot2")install.packages("ggpubr")library
陆小吉1212
·
2024-02-19 14:53
r语言
python
开发语言
携手共进促成长,行稳致远教研路—记东明学校英语校本教研
在课堂中,徐心怡老师设计了丰富的多层听以及说的活动,任务设计由浅入深,层层递进,注重任务
梯度
的设计,引发学生的认知冲突,从而引
张勇杰
·
2024-02-19 12:17
AIGC实战——能量模型(Energy-Based Model)
AIGC实战——能量模型0.前言1.能量模型1.1模型原理1.2MNIST数据集1.3能量函数2.使用Langevin动力学进行采样2.1随机
梯度
Langevin动力学2.2实现Langevin采样函数
盼小辉丶
·
2024-02-19 12:40
AIGC
深度学习
能量模型
【无标题】Matlab之annotation函数——创建图形注释(箭头、椭圆、矩形)
用
归一化
的图窗坐标指定文本箭头位置,起点为(0.3,0.6),终点为(0.5,0.5)。通过设置String属性指定文本说明。
weixin_44202064
·
2024-02-19 12:07
matlab
人工智能
强化学习(TD3)
TD3——TwinDelayedDeepDeterministicpolicygradient双延迟深度确定性策略
梯度
TD3是DDPG的一个优化版本,旨在解决DDPG算法的高估问题优化点:①双重收集:采取两套
sssjjww
·
2024-02-19 11:09
强化学习
python
神经网络
深度学习
OpenCV中的边缘检测技术及实现
该方法结合了多个步骤,包括高斯滤波、计算
梯度
、非最大值抑制和
superdont
·
2024-02-19 11:37
计算机视觉
opencv
人工智能
计算机视觉
python
矩阵
图像处理
经验分享
一阶段目标检测算法:流程详解
预处理步骤可能包括缩放、裁剪、
归一化
等操作,以减少图像中的噪声并调整图像大小以适应网络输入。2.特征提取
小厂程序猿
·
2024-02-19 11:06
目标跟踪
人工智能
计算机视觉
深度学习-吴恩达L1W2作业
Heywhale.com作业2:吴恩达《深度学习》L1W2作业2-Heywhale.com作业1你需要记住的内容:-np.exp(x)适用于任何np.arrayx并将指数函数应用于每个坐标-sigmoid函数及其
梯度
向来痴_
·
2024-02-15 09:05
深度学习
人工智能
data mining-基于实例的学习
注意:通常要使用min-max方法对属性进行
归一化
处理。高效的寻找最近邻基于实例的学习方法很简单而且有效,但速度慢,传统的只需要计算测试点与实例点的各个距离,筛选出最近的
crishawy
·
2024-02-15 09:47
基于LightGBM的回归任务案例
在对XGB模型进行了越来越多的改进以获得更好的性能之后,XGBoost是一种极限
梯度
提升机器,但通过lightgbm,我们可以在没有太多计算的情况下实现类似或更好的结果,并在更短的时间内在更大的数据集上训练我们的模型
python收藏家
·
2024-02-15 09:21
机器学习
数据挖掘
人工智能
机器学习
联合概率分布-概率质量函数
归一化
性质-连续型变量概率分布
更多AI技术入门知识与工具使用请看下面链接:https://student-api.iyincaishijiao.com/t/iNSVmUE8/
云博士的AI课堂
·
2024-02-15 03:16
AI中的数学
概率论
概率分布
概率统计
AI中的数学
联合概率分布
基于决策树的金融市场波动性预测与应用
基于决策树的金融市场波动性预测与应用项目背景与意义数据概述与分析数据来源数据特征数据预处理与特征工程模型训练与评估结果与应用总结LightGBM是一个机器学习算法库,用于
梯度
提升机(GradientBoostingMachine
OverlordDuke
·
2024-02-15 02:42
机器学习
决策树
决策树
算法
机器学习
Task 11 XGBoost 算法分析与案例调参实例
XGBoost是一个优化的分布式
梯度
增强库,旨在实现高效,灵活和便携。它在GradientBoosting框架下实现机器学习算法。XGBoost提供了并行树提升(也称为GBDT,GBM),可以快速
沫2021
·
2024-02-15 00:38
如何使用pytorch自动求
梯度
构建深度学习模型的基本流程就是:搭建计算图,求得损失函数,然后计算损失函数对模型参数的导数,再利用
梯度
下降法等方法来更新参数。
浩波的笔记
·
2024-02-14 23:47
【MATLAB】PSO_BP神经网络回归预测(多输入多输出)算法原理
该算法的原理如下:数据预处理:在进行PSO-BP神经网络回归预测之前,需要对数据进行预处理,包括数据清洗、特征选择和数据
归一化
等步骤。初始化神经网络:首先需要初始化神经网络的结构和初始权值。
Lwcah
·
2024-02-14 22:25
MATLAB
回归预测算法
算法
matlab
神经网络
吴恩达机器学习—大规模机器学习
学习大数据集数据量多,模型效果肯定会比较好,但是大数据也有它自己的问题,计算复杂如果存在100000000个特征,计算量是相当大的,在进行
梯度
下降的时候,还要反复求损失函数的偏导数,这样一来计算量更大。
魏清宇
·
2024-02-14 21:14
线性回归原理与python实现
线性回归原理:在一堆散点中xiyi,拟合出一个函数使其离所有点最近目标函数:y=w1x+w0误差函数:MSE(均方误差)L(w1,w0)=Σ(yi-y)^2优化方法:
梯度
下降,autograd,反向传播
o0Orange
·
2024-02-14 16:22
python
线性回归
算法
PyTorch detach():深入解析与实战应用
PyTorchdetach():深入解析与实战应用文章目录引言一、计算图与
梯度
传播二、detach()函数的作用三、detach()与requires_grad四、使用detach()的示例五、总结与启示结尾引言在
高斯小哥
·
2024-02-14 08:29
PyTorch零基础入门教程
pytorch
人工智能
python
pycharm
机器学习
深度学习
单细胞测序最好的教程(二):
归一化
1.背景在前面的教程中,我们从数据集中删除了低质量的细胞,包括计数较差以及双细胞,并将数据存放在anndata文件中。由于单细胞测序技术的限制,我们在样本中获得RNA的时候,经过了分子捕获,逆转录还有测序。这些步骤会影响同一种细胞的细胞间的测序计数深度的变异性,故单细胞测序数据中的细胞间差异可能会包含了这部分测序误差,等价于计数矩阵中包含了变化很大的方差项。但在目前的统计方法中,绝大部分模型都预先
Starlitnightly
·
2024-02-14 06:18
python
单细胞测序最好的教程(三):特征基因选择
前言提到,在过去两天的教程中,我们讲解了使用omicverse进行单细胞测序数据的质控以及
归一化
的一些思想。
Starlitnightly
·
2024-02-14 06:18
单细胞测序最好的教程
数据库
GEE:
梯度
提升树(Gradient Boosting Tree)回归教程(样本点、特征添加、训练、精度、参数优化)
本文将介绍在GoogleEarthEngine(GEE)平台上进行
梯度
提升树(GradientBoostingTree)回归的方法和代码,其中包括样本点格式介绍
_养乐多_
·
2024-02-14 05:07
GEE遥感图像处理教程
boosting
回归
GEE
云计算
javascript
遥感图像处理
深入理解
梯度
加权类激活热图(Grad-CAM)
深入理解
梯度
加权类激活热图(Grad-CAM)项目背景与意义在深度学习领域,模型的预测能力往往是黑盒子,难以解释。
OverlordDuke
·
2024-02-14 02:12
深度学习
CAM
梯度
人工智能
2019-10-04 学习极大似然估计与优化理论
无约束最优化主要有
梯度
下降法牛顿法
梯度
下降法在接近极值的时候会
小郑的学习笔记
·
2024-02-13 19:11
lightGBM集成学习算法
LightGBM集成学习算法是一种基于
梯度
提升决策树(GradientBoostingDecisionTree)的机器学习算法。它是由微软提出的一种高效的
梯度
提升框架,主要用于解决分类和回归问题。
亦旧sea
·
2024-02-13 14:24
集成学习
算法
机器学习
XGboost集成学习
它是一种GradientBoosting(
梯度
提升)的改进版,通过使用一系列弱学习器(例如决策树)的集合来构建一个更强大的模型。XGBoost通过迭代的方式逐步优化模型的预测结果。
亦旧sea
·
2024-02-13 14:53
集成学习
机器学习
人工智能
XGboost和lightGBM算法对比
XGBoost(eXtremeGradientBoosting)和LightGBM(LightGradientBoostingMachine)都是一类基于
梯度
提升树(GradientBoostingDecisionTrees
亦旧sea
·
2024-02-13 14:50
算法
机器学习入门--多层感知机原理与实践
反向传播是指通过计算损失函数对网络参数进行
梯度
Dr.Cup
·
2024-02-13 13:37
机器学习入门
机器学习
人工智能
机器学习入门--BP神经网络原理与实践
BP算法的核心思想是通过计算损失函数相对于网络参数的
梯度
,然后利用这些
梯度
信息来更新网络的权重和偏置,从而最小化误差。数学原理BP算法的数学原理基于链式法则计算
梯度
。考虑一个简单的两层神经
Dr.Cup
·
2024-02-13 13:37
机器学习入门
机器学习
神经网络
人工智能
【CV论文精读】Pedestrian Detection Based on YOLO Network Model 基于YOLO的行人检测
【CV论文精读】PedestrianDetectionBasedonYOLONetworkModel0.论文摘要和作者信息摘要——经过深度网络后,会有一些行人信息的丢失,会造成
梯度
的消失,造成行人检测不准确
量子-Alex
·
2024-02-13 10:56
CV知识学习和论文阅读
YOLO
深度学习
计算机视觉
时间序列预测——BiGRU模型
在RNNs的基础上,GRU(GatedRecurrentUnit)模型通过引入门控机制来解决
梯度
消失问题,提高了模型的性能。BiGRU模型则是在GRU模型的基础上引入了双向结构,从而
Persist_Zhang
·
2024-02-13 09:46
数据分析
Python
深度学习
gru
人工智能
深度学习中的前向传播和反向传播
反向传递就是计算每个参数的
梯度
,然后用于最小化损失函数。在深度学习中,"forward"通常指前向传播(forwardpropagation),也称为前馈传递。
处女座_三月
·
2024-02-13 07:56
深度学习
深度学习
人工智能
神经网络
《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
In[53]np.save('w.npy',net.w)np.save('b.npy',net.b)总结本节我们详细介绍了如何使用Numpy实现
梯度
下降算法,构建并训练了一个简单的线性模型实现波士顿房价预测
软工菜鸡
·
2024-02-13 06:36
《零基础实践深度学习》
numpy
深度学习
人工智能
大数据
机器学习
飞桨
百度云
多GPU-TensorFlow
数据并行是比较通用简便的实现大规模并行方式,同时使用多个硬件资源计算不同batch数据
梯度
,汇总
梯度
进行全局参数更新。
听风1996
·
2024-02-13 05:22
《记一次游戏》听课思考
甄老师的课堂思路清晰,课堂环节环环相扣,有
梯度
,利用学习单,对孩子的指导很有层次。
你是特别的人
·
2024-02-12 17:18
梯度
提升树系列9——GBDT在多任务学习中的应用
目录写在开头1.多任务学习的基础知识1.1多任务学习的概念和优势1.1.1概念1.1.2优势1.2GBDT在多任务学习中的角色1.2.1GBDT的基本原理1.2.2GBDT在多任务学习中的应用2.实际应用案例和最佳实践2.1如何设计多任务学习模型2.2成功案例分享2.2.1推荐系统2.2.2金融风控2.2.3自然语言处理(NLP)3.挑战与解决方案3.1面临的技术挑战和解决策略3.1.1挑战1:任
theskylife
·
2024-02-12 16:12
数据挖掘
学习
数据挖掘
机器学习
python
人工智能
34从传统算法到深度学习:目标检测入门实战 --方向
梯度
直方图
什么是方向
梯度
直方图在前面的实验1、实验2中,我们了解到传统的目标检测流程可分为三个步骤,第一步是使用滑动窗口和图像金字塔从图片中选择一些区域。
Jachin111
·
2024-02-12 15:37
优化
梯度
下降算法
文章目录OptimizationproblemNormalizinginputsvanishing/explodinggradientsweightinitializegradientcheckNumericalapproximationgradcheckOptimizealgorithmmini-bachgradientmini-batchsizeexponentialweightedavera
stoAir
·
2024-02-12 14:58
算法
机器学习
人工智能
深度学习
神经网络
Week10
以线性回归模型为例,每一次
梯度
下降迭代,我们都需要计算训练集的误差的平方和,如果我们的学
kidling_G
·
2024-02-12 14:29
C语言经典算法之逻辑回归算法
B.简介在C语言中实现逻辑回归算法,我们需要构建一个模型来预测二元分类问题的概率,并使用
梯度
下降或其他优化方法找到最佳的模型参数。一代码实现以下
JJJ69
·
2024-02-12 13:33
C语言经典算法
回归
数据挖掘
人工智能
开发语言
c语言
数据结构
算法
梯度
下降法的神经网络容易收敛到局部最优,为什么应用广泛?
链接:https://www.zhihu.com/question/68109802编辑:深度学习与计算机视觉声明:仅做学术分享,侵删作者:夕小瑶https://www.zhihu.com/question/68109802/answer/263503269反对回答区中一部分称“模型收敛于鞍点”的回答。当然也有的大牛可以一针见血,那我就对这个问题多展开一下吧,让鲜血流的更猛烈一些。(害怕.jpg)
woshicver
·
2024-02-12 11:34
神经网络
算法
机器学习
人工智能
深度学习
西瓜书-机器学习5.4 全局最小与局部极小
localminimum)和"全局最小"(globalminimum)对和,若存在使得多组不同参数值初始化多个神经网络使用“模拟退火”:以一定的概率接受比当前解更差的结果,有助于“跳出”局部极小使用随机
梯度
下降遗传算法
lestat_black
·
2024-02-12 11:32
西瓜书
机器学习
机器学习入门之基础概念及线性回归
任务目录什么是Machinelearning学习中心极限定理,学习正态分布,学习最大似然估计推导回归Lossfunction学习损失函数与凸函数之间的关系了解全局最优和局部最优学习导数,泰勒展开推导
梯度
下降公式写出
梯度
下降的代码学习
StarCoder_Yue
·
2024-02-12 11:01
算法
机器学习
学习笔记
机器学习
线性回归
正则化
人工智能
算法数学
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他