论文阅读-Automated Repair of Programs from Large Language Models
文章主旨:研究了Codex自动生成的程序中的错误,并探讨了现有的程序修复(APR)工具以及新发布的Codex-e是否能够修复自动生成的有缺陷的程序。现在基于大语言模型,输入自然语言,生成代码的应用非常普遍。但是生成的代码正确率很低,文章以GPT-3模型的后代-Codex模型,为例,试图利用自动化程序修复(APR)技术来修复Codex产生的代码错误。自动化修复技术接受一个有缺陷的程序和一个正确性规范