E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
Softmax分类器
《scikit-learn》xgboost
•XGBoost的基学习器除了可以是CART(这个时候就是GBDT)也可以是线性
分类器
,而GBDT只能是CART。•XGBoost的目标函数的近似用了二阶泰勒展开,模型优化效果更好。•XGBoost
星海千寻
·
2024-01-19 12:29
机器学习
scikit-learn
xgboost
李沐《动手学深度学习》线性神经网络
softmax
回归
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归目录系列文章一、
softmax
回归(一)问题背景(二)网络架构
丁希希哇
·
2024-01-19 08:36
李沐《动手学深度学习》学习笔记
深度学习
神经网络
回归
pytorch
一个简单的KNN实现方法
对于许多离散问题,经过神经网络解决再通过
softmax
之后每一个值在[0,1]之间的连续变量,想要将其离散化,即离散化到每个元素都是binary-variable,即0-1,这时可以用KNN方法,其实就是找到与这个向量的方差最小的
远离科研,保命要紧
·
2024-01-19 08:03
Python
python
开发语言
神经网络激活函数--Sigmoid、Tanh、Relu、
Softmax
本文主要总结了Sigmoid、Tanh、Relu、
Softmax
四种函数;给出了函数的形式,优缺点和图像。sigmoid和Tanh函数的导数简单,但是可能出现梯度弥散。
远离科研,保命要紧
·
2024-01-19 08:27
Python
神经网络
深度学习
机器学习
YOLOv8全网首发:DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测
本文独家改进:DCNv4更快收敛、更高速度、更高性能,完美和YOLOv8结合,助力涨点DCNv4优势:(1)去除空间聚合中的
softmax
归一化,以增强其动态性和表达能力;(2)优化存储器访问以最小化冗余操作以加速
AI小怪兽
·
2024-01-19 05:34
YOLOv8原创自研
人工智能
深度学习
YOLO
算法
机器学习
隐马尔可夫模型【维特比算法】
第一章机器学习简介第二章感知机第三章支持向量机第四章朴素贝叶斯
分类器
第五章Logistic回归第六章线性回归和岭回归第七章多层感知机与反向传播【Python实例】第八章主成分分析【PCA降维】第九章隐马尔可夫模型文章目录机器学习笔记一
格兰芬多_未名
·
2024-01-19 03:21
机器学习
算法
人工智能
机器学习
奇异值分解(SVD)【详细推导证明】
第一章机器学习简介第二章感知机第三章支持向量机第四章朴素贝叶斯
分类器
第五章Logistic回归第六章线性回归和岭回归第七章多层感知机与反向传播【Python实例】第八章主成分分析【PCA降维】第九章隐马尔可夫模型第十章奇异值分解文章目录机器学习笔记一
格兰芬多_未名
·
2024-01-19 03:20
机器学习
机器学习
矩阵分解
yolo9000:Better, Faster, Stronger的目标检测网络
目录一、回顾yolov1二、yolov2详细讲解2.1Better部分创新点(1)BatchNormalization(批量归一化)(2)HighResolutionClassifier---高分辨率
分类器
慕溪同学
·
2024-01-19 03:09
YOLO
目标检测
目标检测
人工智能
YOLO
深度学习
yolo
机器学习练习 6 - Support Vector Machines(支持向量机)
机器学习练习6-SupportVectorMachines(支持向量机)Introduction在本实验中,将使用支持向量机(SVMs)来构建垃圾邮件
分类器
。
Phoenix_ZengHao
·
2024-01-19 02:59
机器学习
python
机器学习
人工智能
自然语言处理
sklearn
YOLOv5全网独家首发:DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测实现暴力涨点
本文独家改进:DCNv4更快收敛、更高速度、更高性能,完美和YOLOv5结合,助力涨点DCNv4优势:(1)去除空间聚合中的
softmax
归一化,以增强其动态性和表达能力;(2)优化存储器访问以最小化冗余操作以加速
AI小怪兽
·
2024-01-19 02:46
YOLOv5原创自研
YOLO
算法
目标跟踪
人工智能
机器学习
【机器学习】西瓜书要点个人整理
目录前置基础知识第三章线性模型机器学习三要素1.函数集合2.目标函数3.优化方法4.模型评估方法对数几率回归(逻辑回归)第四章决策树第五章SVM第六章贝叶斯
分类器
第八章集成学习第九章神经网络前情提要:本文适合在学习机器学习课程前
_hermit:
·
2024-01-19 02:45
机器学习
机器学习
人工智能
学习
2 感知机
感知机模型的假设空间是定义在特征空间中的所有线性分类模型或线性
分类器
,即函数集合{f|f(x)=wx+b}.感知机的几何解释:线性方程wx+b=0对应于特征空间Rn中的一个超平面
奋斗的喵儿
·
2024-01-18 20:58
神经网络(二):
Softmax
函数与多元逻辑回归
一、
Softmax
函数与多元逻辑回归为了之后更深入地讨论神经网络,本节将介绍在这个领域里很重要的
softmax
函数,它常被用来定义神经网络的损失函数(针对分类问题)。
城市中迷途小书童
·
2024-01-18 20:08
计算机视觉设计如何应用于人脸识别技术?
下面是计算机视觉设计在人脸识别技术中的应用方法:人脸检测:计算机视觉设计可以通过使用人脸检测算法,如Haar级联
分类器
、基于深度学习的卷积神经网络等,来检测图像中的人脸位置。
人工智能培训
·
2024-01-18 17:07
计算机视觉
人工智能
自然语言处理
python
用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer
为什么在进行
softmax
之前需要对attent
深度学习算法与自然语言处理
·
2024-01-18 15:55
NLP与大模型
transformer
深度学习
人工智能
LLM
自然语言处理
【机器学习】机器学习四大类第01课
实例:垃圾邮件
分类器
。训练数据集包含一系列电子邮件及其对应的标签(垃圾邮件或非垃圾邮件)。通过学习这些特征与标签之间的关联,模型可以用于识别新的邮件是否为垃圾邮件。无监督
德天老师
·
2024-01-18 14:29
AI模型专栏
机器学习
人工智能
5.逻辑回归 Logistic Regression
————————————————————————分割线————————————————————————逻辑回归的定义:逻辑回归,是一种名为“回归”的线性
分类器
宫灵均
·
2024-01-18 13:47
机器学习之路
Python中如何使用NLTK/TextBlob/VADER等库进行情感分析
可以使用NLTK来进行情感分析,通常需要训练一个
分类器
。NLTK还提供了情感词汇(如WordNet)和语料库,用于帮助构建情
Pandas120
·
2024-01-18 13:54
Python技巧
python
开发语言
pytorch集智4-情绪
分类器
和上一章节单车预测回归问题相比,这个问题是分类问题,不是回归问题2神经网络
分类器
2.1如何用神经网络分类第二章节用torch.nn.Sequantial做的回归预测器,输出神经元只有一个。
peter6768
·
2024-01-18 12:38
pytorch
人工智能
深度学习
FCN全卷积网络Fully Convolutional Networks
语义分割CNN实现语义分割FCN实现语义分割全连接层注:以下内容摘自知乎全连接层(fullyconnectedlayers,FC)在整个卷积神经网络中起到“
分类器
”的作用。
踩坑第某人
·
2024-01-18 10:24
大语言模型系列-word2vec
文章目录前言一、word2vec的网络结构和流程1.Skip-Gram模型2.CBOW模型二、word2vec的训练机制1.Hierarchical
softmax
2.NegativeSampling总结前言在前文大语言模型系列
学海一叶
·
2024-01-18 08:39
LLM
语言模型
word2vec
人工智能
自然语言处理
深度学习
YoloV8改进策略:Agent Attention|
Softmax
与线性注意力的融合研究|有效涨点|代码注释与改进|全网首发(唯一)
摘要涨点效果:在我自己的数据集上,mAP50由0.986涨到了0.991,mAP50-95由0.737涨到0.753,涨点明显!本文提出了一种新型的注意力机制——AgentAttention,旨在平衡计算效率和表示能力。该机制在传统的注意力模块中引入了额外的agenttokensA,这些agenttokens首先为querytokensQ聚合信息,然后将其广播回Q。由于agenttokens的数量
静静AI学堂
·
2024-01-18 06:32
YOLO
为什么在进行
softmax
之前需要对attention进行scaled(为什么除以 d_k的平方根)
解释的好:Self-attention中dot-product操作为什么要被缩放-知乎标准正太分布(0均值,1方差的高斯分布)解释1:解释2:这样做是因为对于较大的深度值,点积的大小会增大,从而推动
softmax
ytusdc
·
2024-01-18 04:52
AI之路
-
Face
神经网络
深度学习
自然语言处理
机器学习——python训练RNN模型实战(傻瓜式教学,小学生都可以学会)代码开源
机器学习实战目录第一章python训练线性模型实战第二章python训练决策树模型实战第三章python训练神经网络模型实战第四章python训练支持向量机模型实战第五章python训练贝叶斯
分类器
模型实战第六章
苏苏不是叔
·
2024-01-18 01:01
机器学习
python
rnn
机器学习——python训练CNN模型实战(傻瓜式教学,小学生都可以学会)代码开源
机器学习实战目录第一章python训练线性模型实战第二章python训练决策树模型实战第三章python训练神经网络模型实战第四章python训练支持向量机模型实战第五章python训练贝叶斯
分类器
模型实战第六章
苏苏不是叔
·
2024-01-18 01:00
机器学习
python
cnn
图像分类 | 基于 Labelme 数据集和 VGG16 预训练模型实现迁移学习
基于标注样本的信息和预训练模型的特征提取能力,训练自己构建的图像
分类器
,从而实现迁移学习。目录一、导入必要库二、定义目录变量三、数据预处理--数据增强+标签处理1.定义图像数据生成器2.标注样本的
源于花海
·
2024-01-17 23:28
深度学习
分类
迁移学习
深度学习
计算机视觉
数据挖掘之分类问题、决策树问题以及一个关于误差的泛化理论
分类问题的定义首先老师抛出了对分类问题的定义,本质上就是在某一个分布D上找到一个
分类器
,可以实现在该分布上的特
蒋大钊!
·
2024-01-17 21:16
人工智能
决策树
数据挖掘
分类
机器学习——支持向量机SVM
1摘要:支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性
分类器
。
AAI机器之心
·
2024-01-17 15:32
机器学习
支持向量机
人工智能
python
深度学习
数据挖掘
pytorch
Udacity.深度学习.从机器学习到深度学习.2017-11-07
1.练习-
softmax
模型测试样例scores=[1.0,2.0,3.0]print
softmax
(scores)[0.090030570.244728470.66524096]scores=np.array
小异_Summer
·
2024-01-17 13:10
机器学习 -- 朴素贝叶斯
分类器
场景朴素贝叶斯
分类器
是一种基于贝叶斯定理的简单概率
分类器
,广泛应用于各种机器学习场景。朴素贝叶斯
分类器
利用贝叶斯定理来预测一个数据点的类别。
北堂飘霜
·
2024-01-17 07:37
python
AI
机器学习
人工智能
贝叶斯
分类器
(公式推导+举例应用)
文章目录引言贝叶斯决策论先验概率和后验概率极大似然估计朴素贝叶斯
分类器
朴素贝叶斯
分类器
的优点与缺点优点缺点总结实验分析引言在机器学习的世界中,有一类强大而受欢迎的算法——贝叶斯
分类器
,它倚仗着贝叶斯定理和朴素的独立性假设
Nie同学
·
2024-01-17 03:12
机器学习
机器学习
分类
Faster R-CNN
当生成候选区域后进行的仍然和FastR-CNN一样的操作(Rolpooling->FC->
softmax
&边界框预测)。
DQ小恐龙
·
2024-01-16 23:39
cnn
人工智能
神经网络
GEE:机器学习分类中每个类别的概率图像可视化
作者:CSDN@_养乐多_在GoogleEarthEngine(GEE)中应用机器学习
分类器
进行多分类时,有一个需求是想知道每个像素对于每个类别的分类概率。
_养乐多_
·
2024-01-16 21:23
GEE机器学习专栏
GEE
云计算
javascript
遥感图像处理
机器学习
使用PaddleNLP识别垃圾邮件准确率98.5%的垃圾邮件
分类器
(附数据集下载)
使用PaddleNLP识别垃圾邮件准确率98.5%的垃圾邮件
分类器
(附数据集下载)。什么是垃圾邮件?垃圾邮件泛指未经请求而发送的电子邮件,例如未经发件人请求或允许而发送的商业广告或非法的电子邮件。
代码讲故事
·
2024-01-16 21:29
机器人智慧之心
PaddleNLP
垃圾邮件
分类器
数据集
NLP
随机森林
朴素贝叶斯
opencv_模型训练
文件夹opencv训练文件xmlnegdataposdata说明negdata目录:放负样本的目录posdata目录:放正样本的目录xml目录:新建的一个目录,为之后存放
分类器
文件使用neg.txt:负样本路径列表
轩宇^_^
·
2024-01-16 16:45
#
opencv
opencv
XGBoost(eXtreme Gradient Boosting)
XGBoost的基本原理和GradientBoosting类似,都是采用加法模型的形式来建立基本
分类器
集合,不过和普通的Gra
appron
·
2024-01-16 07:52
机器学习
机器学习
python
决策树
人工智能-OpenCV+Python实现人脸识别(人脸检测)
首先要采用样本的Haar特征训练
分类器
,从而得到一个级联的AdaBoost
分类器
。Haar特征值反映了图像的灰度变化情况。
人工智能研究所
·
2024-01-16 06:21
人工智能之计算机视觉
opencv
人工智能
python
【opencv】python实现人脸检测和识别训练
人脸识别OpenCV中的人脸识别通常基于哈尔特征
分类器
(HaarCascadeClassifier)进行。
游码客
·
2024-01-16 05:39
python
opencv
python
人工智能
集成学习(五)Stacking
1.导言Stacking集成算法可以理解为一个两层的集成,第一层含有多个基础
分类器
,把预测的结果(元特征)提供给第二层,而第二层的
分类器
通常是逻辑回归,他把一层
分类器
的结果当作特征拟合输出预测结果。
我想要日更徽章
·
2024-01-16 04:59
机器学习笔记E4--朴素贝叶斯
预备知识贝叶斯定理(BayesianTheorem)先验概率与后验概率朴素贝叶斯
分类器
何为“朴素”:属性条件独立性假设分类准则离散属性与连续属性值的分别处理例子讲解拉普拉斯修正(Laplaciancorrection
EL33
·
2024-01-15 14:44
机器学习 | 多层感知机MLP
2.实验内容能给出与线性
分类器
(自行实现)作对比,并分析原因。用不同数据量,不同超参数,比较实验效果。不许用现成的平台,例如Pytorch,Tensorflow的自动微分工具。实现实验结果的可视化。
rookiexiong
·
2024-01-15 12:59
机器学习
机器学习
人工智能
LeNet-5(用于手写体字符识别)
结构:输入的二维图像,先经过两次卷积层到池化层,再经过全连接层,最后使用
softmax
分类作为输出层每层有多个FeatureMap(每个FeatureMap有多个神经元)FeatureMap通过一种卷积滤波器提取输入的一种特征各层参数详解
okimaru
·
2024-01-15 10:27
卷积神经网络
深度学习
神经网络
机器学习
集成学习之Adaboost算法详解
AdaptiveBoosting(自适应提升)是基于Boosting思想实现的一种集成学习算法,核心思想是提高【在前一步中分类错误的样本权重】来训练一个强
分类器
,错误的数据会“放大”,正确的数据会“缩小
进击的卡特琳娜
·
2024-01-15 09:41
机器学习
集成学习
机器学习
人工智能
python
算法
Softmax
回归(多类分类模型)
目录1.对真实值类别编码:2.预测值:3.目标函数要求:4.使用
Softmax
模型将输出置信度Oi计算转换为输出匹配概率y^i:5.使用交叉熵作为损失函数:6.代码实现:1.对真实值类别编码:y为真实值
姓蔡小朋友
·
2024-01-15 08:39
机器学习
回归
分类
数据挖掘
机器学习---lightGBM
AdaBoost两个问题:(1)如何改变训练数据的权重或概率分布提高前⼀轮被弱
分类器
错误分类的样本的权重,降低前⼀轮被分对的权重(2)如何将弱
分类器
组合成⼀个强
分类器
,亦即,每个
分类器
,前面的权重如何设置采取
三月七꧁ ꧂
·
2024-01-15 08:24
机器学习
机器学习
人工智能
半监督学习 - 半监督支持向量机(Semi-Supervised Support Vector Machines)
与传统的监督SVM不同,S3VM通过结合有标签数据和无标签数据来提高
分类器
的性能。以下是半监督支持向量机的基本思想和步骤:基本思想利用未标记数据:利用未标记的数据来增加模型的泛化性能。
草明
·
2024-01-15 06:47
数据结构与算法
支持向量机
算法
机器学习
组队学习《动手学深度学习》Task01学习笔记
Task01包含了线性回归模型,
softmax
模型,多层感知机,文本预处理,语言模型,循环神经网络这几块内容这里主要记录一些零碎的笔记,主要是关于理论1、线性回归模型就是使用了一个线性函数去拟合样本,得到预测值
612twilight
·
2024-01-14 23:46
Agent Attention:以一种优雅的方式来结合线性注意力和
softmax
注意力
论文链接:https://arxiv.org/abs/2312.08874代码地址:https://github.com/LeapLabTHU/Agent-Attention1.简介 近年来,视觉Transformer模型得到了极大的发展,相关工作在分类、分割、检测等视觉任务上都取得了很好的效果。然而,将Transformer模型应用于视觉领域并不是一件简单的事情。与自然语言不同,视觉图片中
liiiiiiiiiiiiike
·
2024-01-14 10:08
深度学习
算法
计算机视觉
图像处理
混淆矩阵
混淆矩阵是一个表,经常用来描述分类模型(或“
分类器
”)在已知真实值的一组测试数据上的性能。混淆矩阵本身比较容易理解,但是相关术语可能会令人混淆。
Phoenix Studio
·
2024-01-13 15:16
列表
python
深度学习
机器学习
支持向量机
深度学习入门之2--神经网络
目录1神经网络初解2激活函数及实现2.1初识激活函数2.1激活函数类型及实现2.1.1阶跃函数及实现2.1.2sigmoid函数及实现2.1.3Relu函数及实现2.1.4恒等函数和
softmax
函数及实现
梦灯
·
2024-01-13 13:06
人工智能
python
上一页
2
3
4
5
6
7
8
9
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他