Youtube DNN:Deep Neural Networks for YouTube Recommendations
1.介绍本文主要解决的三个挑战:大规模的推荐场景,能够支持分布式训练和提供有效率的服务。不断更新的新物料。稀疏的用户行为,包含大量的噪声。2.推荐系统文章包含推荐系统的两阶段模型:召回和排序。召回网络根据用户的历史行为从视频库中检索几百个候选视频,这些视频被认为有很高的准确率与用户相关。候选集的生成是根据粗粒度的个性化—协同过滤生成的。用户之间的相似性是以粗粒度特征表示的,例如视频观看ID,搜索q