- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 《机器学习实战笔记--第一部分 分类算法:决策树 3》
z新一
机器学习决策树python
构造分类器:我们在构造了决策树之后,可以用于实际的分类了。在执行分类的时候需要决策树以及用于构造树的标签向量。程序比较测试数据与决策树上的数值,递归执行该过程直到进入叶子节点;最后将测试数据定义为叶子节点所属的类型。defclassify(inputTree,featLabels,testVec):#featLabels特征标签列表firstStr=list(inputTree.keys())[0
- 机器学习实战笔记(三):使用k-近邻算法的手写识别系统(Python3 实现)
max_bay
机器学习实战笔记机器学习实战笔记kNN手写数字识别系统Python
完整代码及数据地址:https://github.com/cqulun123/Machine-Learning-in-Action0使用k-近邻算法的手写识别系统的步骤(1)收集数据:提供文本文件。(2)准备数据:编写函数classify0(),将图像格式转换为分类器使用的list格式。(3)分析数据:在Python命令提示符中检查数据,确保它符合要求。(4)训练算法:此步骤不适用于k-近邻算法。
- 机器学习实战笔记(蜥蜴书)—— 第二章:端到端项目
Crayon鑫
笔记机器学习机器学习笔记人工智能
目录前言机器学习前的准备工作1、机器学习需要用到的库:安装:文件导入库2、所用工具数据准备1、获取数据2、检查数据3、创建训练/测试集数据可视化数据预处理1、缺失值处理2、文本属性处理3、数据集添加其他列4、数值缩放5、得到预处理的数据模型建立1、线型模型2、决策树模型3、随机森林模型模型验证1、简单均方根误差验证2、使用交叉验证模型保存模型调整模型评估前言“蜥蜴书”是我机器学习的启蒙书,现在开始
- 机器学习实战笔记(一)机器学习基础
三千侵天
机器学习机器学习人工智能算法
什么是机器学习?机器学习能让我们从数据集中受到启发。我们会利用计算机来彰显数据背后的真实含义,这才是机器学习的真实含义。机器学习就是把无序的数据转换成有用的信息。可以这么说,机器学习对于任何需要解释并操作数据的领域都有所裨益。机器学习领域的关键术语下表是用于区分不同鸟类需要使用的四个不同的属性值。现实中,你可能会想测量更多的值。通常的做法是测量所有可测属性,然后再挑选出重要部分。上面测量的这四种值
- 《机器学习实战笔记》-逻辑回归-梯度上升法
代码太难敲啊喂
深度学习实战-自学笔记机器学习逻辑回归人工智能
主要难点:公式推导和边界函数的设定importmatplotlib.pyplotaspltimportnumpyasnp'''求函数f(x)=-x^2+4x的最大值'''defgradient_Ascent_test():deff_prime(x_old):return-2*x_old+4#'f(x)的导数=-2x+4'#初始化:old小于newnew从曲线(0,0)开始,学习率为0.01误差值为
- 机器学习实战笔记——第十三章
DaMeng999
机器学习tensorflow机器学习python
一、数据API使用tf.data.Dataset.from_tensor_slices创建一个数据集:dataset=tf.data.Dataset.from_tensor_slices(tf.range(10))print(dataset,tf.range(10))foritemindataset:print(item)结果如下:from_tensor_slices该函数创建一个给定张量的切片(
- 机器学习实战笔记--决策树
Azoobie
机器学习python决策树机器学习python决策树
本文为《机器学习实战》学习笔记1.决策树简介决策树可以从数据集合汇总提取一系列的规则,创建规则的过程就是机器学习的过程。在构造决策树的过程中,不断选取特征划分数据集,直到具有相同类型的数据均在数据子集内。1.1划分数据集由于不同属性的数据类型不同,其对应的测试条件也不同。即非叶子节点的每条出边代表的含义不同。二元属性产生两个可能的输出。标称属性具有多个属性值。可以根据属性值的数量产生多路划分,每个
- 机器学习实战笔记(二)KNN算法
chenyonwu同学
机器学习机器学习算法人工智能
文章目录算法概念、基本思想和应用概念基本思想应用实例三个基本要素K的取值距离度量分类决策规则特征归一化很重要算法描述与优缺点参考博客算法概念、基本思想和应用概念官方概念:所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。简单来说,根据待分类点的周围邻居来判断类别,邻居大多数属于哪一类,就将待
- 机器学习实战笔记(一)
威士忌燕麦拿铁
算法大数据python机器学习人工智能
1机器学习概览1.什么是机器学习机器学习是通过编程让计算机从数据中进行学习的科学(和艺术)。机器学习是让计算机具有学习的能力,无需进行明确编程。(亚瑟·萨缪尔,1959)计算机程序利用经验E学习任务T,性能是P,如果针对任务T的性能P随着经验E不断增长,则称为机器学习(汤姆·米切尔,1997)2.为什么要进行机器学习需要进行大量手工调整或者需要拥有长串规则才能解决的问题:机器学习算法通常可以简化代
- 机器学习实战笔记--kNN
Azoobie
机器学习python机器学习pythonknn分类器
本文为《机器学习实战》学习笔记1.相关数据类型&函数介绍SciPy基于Python生态系统提供了数学运算、科学和工程的开源软件,主要包括基本N维数组包NumPy,科学计算基本库SciPylibrary,用于2D绘图的Matplotlib,交互式控制台IPython,用于符号数学Sympy,用于数据结构和分析的pandas。1.1NumPyNumPy是python科学计算的基础包。包括强大的N维数组
- Pandas入门笔记
Sehr_Gut
pandas
笔记参照课程唐宇迪python数据分析与机器学习实战笔记方便自己今后回顾和查看,需要详细了解各自Pandas操作,建议学习上述课程Pandas数据结构pandas是基于numpy的数据处理库。其数据的基本结构从小到大依次为numpy.array,pandas.core.series.Series以及pandas.core.frame.DataFrame.简单的pandas特有的结构为series和
- 机器学习实战笔记(Python实现)-02-决策树
lengyuyan007
机器学习
决策树原理简单来说就是:1,先计算所有列概率,及概率log值,据此求出整体的信息熵A;2,取出数据集中的每一列,计算剩余特征值的信息熵ai,并计算差值,也就是信息熵增益:bi=A-ai,除去自己这列,算的信息熵越小,信息增益越大,表示自己这列越重要;3,选出最重要的列,作为主要特征,作为根节点,依次比较,直到创建分类树;4,拿测试集来测试,从根节点开始检测,最后分类;决策树须知概念信息熵&信息增益
- 《机器学习实战笔记--第一部分 分类算法:决策树 4》
z新一
机器学习python决策树决策树连续值处理
之前的决策树分类部分只完成了对离散值的分类,当遇到有某些属性值是连续的时候就需要一些其他的方法了。由于连续值的可取值数目不再有限,因此不能直接根据连续属性的可取值来对节点进行划分。此时就需要连续属性的离散化,最简单的策略是采用二分法对连续属性进行处理,这正是C4.5决策树算法中采用的机制。下面我们以周志华老师的西瓜书为例画一个带有连续值分类的决策树。给定样本集D和连续属性a,假定a在D上出现了n个
- 机器学习实战笔记8—随机森林
业余狙击手19
ML
注:此系列文章里的部分算法和深度学习笔记系列里的内容有重合的地方,深度学习笔记里是看教学视频做的笔记,此处文章是看《机器学习实战》这本书所做的笔记,虽然算法相同,但示例代码有所不同,多敲一遍没有坏处,哈哈。(里面用到的数据集、代码可以到网上搜索,很容易找到。)。Python版本3.6机器学习十大算法系列文章:机器学习实战笔记1—k-近邻算法机器学习实战笔记2—决策树机器学习实战笔记3—朴素贝叶斯机
- 机器学习实战笔记——决策树
yuexiahandao
机器学习机器学习
决策树-ID3决策树也是经常使用的数据挖掘算法。这张图所示就是一个决策树。长方形代表判断模块,椭圆形代表终止模块。从判断模块引出的左右箭头称作分支。决策树的一个重要任务是为了理解数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列,这些机器根据数据集创建规则的过程,就是机器学习的过程。训练出来的数据可以使用Matplotlib来绘制决策树图。决策树构造算法特点:优点:计算
- TYD2019python机器学习实战笔记,初识 numpy 和 pandas
南征_北战
算法
目录目录第一章:入学指南及其杂项.ipynb文件如何打开python库安装工具第二章:python科学计算库numpy第三章:python数据分析处理库—Pandas第一章:入学指南及其杂项在校生更偏重底层算法推导,而不仅仅是会用。自己做笔记很重要,要用自己的话说,用自己的话写,用别人的容易忘。最好的资源站点GitHub,kaggle(找数据的,竞赛网站)。案例积累很重要,因为实际接手项目时,都不
- python实现线性回归预测_机器学习实战笔记(Python实现)-08-线性回归
weixin_39653078
python实现线性回归预测
---------------------------------------------------------------------------------------本系列文章为《机器学习实战》学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正。-------------------------------------------------------------------
- python神经网络分析案例_python神经网络实战
weixin_39776344
python神经网络分析案例
机器学习实战笔记(Python实现)-04-Logistic回归转自:机器学习实战笔记(Python实现)-04-Logistic回归转自:简单多元线性回归(梯度下降算法与矩阵法)转自:人工神经网络(从原理到代码)Step01感知器梯度下降文章晴天哥2018-01-28742浏览量书籍:机器学习和图像处理实战PracticalMachineLearningandImageProcessing-20
- 机器学习实战笔记
Solarzhou
机器学习Python机器学习实战
文章目录2k近邻算法2.1实施kNN算法代码清单1:测试,结果:2.2使用kNN改进约会网站的配对效果2.2.1准备数据,从文本中解析数据2.2.2分析数据:使用Matplotlib创建散点图2.2.3准备数据:归一化数值测试算法:作为完整程序验证2.3使用算法:构建完整可用系统2.3.1准备数据:将图像转换为测试向量2.3.2测试算法:使用kNN近邻算法识别手写数字3决策树3.1决策树构造3.1
- 机器学习实战笔记——第十一章
DaMeng999
机器学习神经网络机器学习深度学习
目录一、梯度消失与梯度爆炸1.1Glorot和He初始化1.1.1tf.keras.initializers.VarianceScaling1.2非饱和激活函数1.2.1tf.keras.layers.LeakyReLU1.2.2tf.keras.layers.PReLU1.3批量归一化1.4梯度裁剪1.4.1tf.keras.optimizers.SGD二、重用预训练层——解决训练数据不同2.1
- 机器学习实战笔记——第十章
DaMeng999
机器学习神经网络机器学习深度学习
目录一、神经网络基础1.1反向传播训练算法1.2回归MLP1.3分类MLP二、利用tf.keras搭建神经网络2.1加载数据2.2顺序API创建分类模型2.2.1tf.keras.Sequential2.2.2tf.keras.layers.Flatten2.2.3tf.keras.layers.Dense()2.3顺序API创建回归模型2.4函数式API创建复杂模型2.4.1tf.keras.I
- 机器学习实战笔记5—支持向量机
业余狙击手19
ML
注:此系列文章里的部分算法和深度学习笔记系列里的内容有重合的地方,深度学习笔记里是看教学视频做的笔记,此处文章是看《机器学习实战》这本书所做的笔记,虽然算法相同,但示例代码有所不同,多敲一遍没有坏处,哈哈。(里面用到的数据集、代码可以到网上搜索,很容易找到。)。Python版本3.6机器学习十大算法系列文章:机器学习实战笔记1—k-近邻算法机器学习实战笔记2—决策树机器学习实战笔记3—朴素贝叶斯机
- 机器学习实战笔记(1)
sunnnnman
学习笔记机器学习算法python
机器学习实战笔记(1)一、k-近邻算法1、算法主要实现步骤计算已知类别数据集中的点与当前点之间的距离(欧式距离公式);按照距离递增次序排序;选取与当前点距离最小的K个点;确定前K个点所在类别出现频率;返回前K个点出现频率最高的类别作为当前的点的预测分类;2、示例1约会配对(1)数据散点图对数据1、2列属性值绘制散点图如下(三种分类采用颜色区分)(2)判断所属分类defclassify0(inX,d
- 机器学习实战笔记二_Python3
艾欧尼亚归我了
机器学习
程序清单2-2个人程序注释+Python3部分代码改造(针对int(listFromLine[-1])编译不通过的调整)先贴2-2的伪代码函数:[python]viewplaincopydeffile2matrix(filename):#openafile,default:'r'eadfr=open(filename)#一次读取所有行arrayOLines=fr.readlines()#得到行数n
- 机器学习实战笔记——利用KNN算法改进约会网站的配对效果
zhihua_bupt
MachineLearningPython图像超分辨率技术机器学习实战笔记
利用KNN算法改进约会网站的配对效果一、案例背景我的朋友海伦一直使用在线约会网站寻找合适自己的约会对象。尽管约会网站会推荐不同的人选,但她并不是喜欢每一个人。经过一番总结,她发现曾交往过三种类型的人:(1)不喜欢的人;(2)魅力一般的人;(3)极具魅力的人;尽管发现了上述规律,但海伦依然无法将约会网站推荐的匹配对象归入恰当的分类,她觉得可以在周一到周五约会那些魅力一般的人,而周末则更喜欢与那些极具
- Python数据分析与机器学习实战笔记(4)- Seaborn
grinningGrace
文章目录Seaborn1.Seaborn简介2.整体布局风格设置3.风格细节设置4.调色板4.1调色板4.2分类色板4.3圆形画板4.4调色板颜色设置4.4.1使用xkcd颜色来命名颜色4.4.2连续色板4.4.3cubehelix_palette()调色板4.4.4light_palette()和dark_palette()调用定制连续调色板5.单变量分析绘图5.1数据分布情况5.2根据均值和协
- Python数据分析与机器学习实战笔记(5) - K近邻算法
grinningGrace
文章目录K近邻算法1.K近邻算法概述1.1读取数据1.2KnearestNeighbor算法1.3(欧式)距离的定义1.4模型评估1.4.1首先制定好训练集和测试集1.4.2基于单变量预测价格1.4.3RootMeanSquaredError均方根误差1.4.4不同的变量效果会不会不同呢1.4.5数据标准化,归一化1.4.6多变量距离的计算1.4.7多变量KNN模型2.sklearn库与功能2.1
- Python数据分析与机器学习实战笔记(9) - 案例实战python实现逻辑回归
grinningGrace
文章目录案例实战python实现罗辑回归1.任务概述1.1Thelogisticregression1.2要完成的模块1.2.1sigmoid函数1.2.2model1.2.3cost损失函数1.2.4gradient计算梯度1.2.5descent进行参数更新1.2.5.1不同的停止策略1.2.5.2对比不同的梯度下降方法1.2.7计算精度案例实战python实现罗辑回归1.任务概述Thedat
- Python数据分析与机器学习实战笔记(10) - 项目实战(交易数据异常检测)
grinningGrace
文章目录项目实战(交易数据异常检测)1.信用卡欺诈检测1.1任务流程:1.2主要解决问题:2.项目总结项目实战(交易数据异常检测)1.信用卡欺诈检测基于信用卡交易记录数据建立分类模型来预测哪些交易记录是异常的哪些是正常的。1.1任务流程:a.加载数据,观察问题b.针对问题给出解决方案c.数据集切分d.评估方法对比e.逻辑回归模型f.建模结果分析g.方案效果对比1.2主要解决问题:(1)在此项目中,
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc