- 机器学习西瓜书笔记1
糊了胡
机器学习机器学习笔记人工智能
第一章机器学习之绪论目录第一章机器学习之绪论一、引言二、基本术语三、假设空间四、归纳偏好五、发展历程一、引言机器学习就是致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。Mitchell给出了更形式化的定义:假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则我们就说关于T和P,该程序对E进行了学习。二、基本术语收集一组西瓜数据,(色泽=青
- 西瓜书笔记
Moliay
ML算法
周志华老师亲讲-西瓜书全网最详尽讲解-1080p高清原版《机器学习初步》周志华机器学习(西瓜书)学习笔记(持续更新)周志华《MachineLearning》学习笔记绪论基本术语数据集(dataset):一堆关于某种事物的数据的集合示例(instance)或样本(sample):每条记录是关于一个事件或对象的描述,称为一个示例或样本属性(attribute)或特征(feature):反映事件或对象在
- 西瓜书笔记4: 决策树
lagoon_lala
人工智能机器学习决策树
目录4.1基本流程决策树学习基本算法4.2划分选择4.2.1信息增益信息熵信息增益西瓜例子4.2.2增益率4.2.3基尼指数4.3剪枝处理4.3.1预剪枝4.3.2后剪枝4.4连续与缺失值4.4.1连续值处理连续属性离散化西瓜例子4.4.2缺失值处理信息增益西瓜例子4.5多变量决策树轴平行决策树斜决策树4.1基本流程决策树:样本分类可看作基于树结构,来进行决策的过程.基本流程:"分而治之"(div
- 【西瓜书笔记】8. EM算法(上)
西风瘦马1912
《机器学习》西瓜书第15期概率论机器学习EM算法极大似然估计
EM算法的引入引入EM算法的原因:概率模型有时候既含有观测变量,又含有隐变量或者潜在变量。如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或者贝叶斯估计法估计模型参数。但是当模型含有隐变量时,就不能简单地使用这些估计方法。EM算法就是含有隐变量的概率模型参数的极大似然估计法。EM算法的例子《统计学习方法》例9.1(三硬币模型):假设有3枚硬币,分别记作A,B,C。这些硬币正
- 《西瓜书笔记》(1)机器学习概述
土豆洋芋山药蛋
《西瓜书》指的是周志华老师的《机器学习》著作什么是机器学习?机器学习致力于通过计算的手段,利用经验来改善系统自身性能的学科经验通常是以“数据”的形式体现,或者上一次训练的错误机器学习的本质任务是预测。学习任务的分类:若我们预测的是离散值,如西瓜是好瓜还是坏瓜,此类学习任务是分类若我们预测的是连续值,如西瓜的成熟度,此类学习任务是回归若西瓜本身没有任何标签(好的,坏的,浅色的,深色的等),我们根据潜
- 西瓜书第一二章随记
惊石
机器学习聚类算法
西瓜书笔记第一章计算机系统中,“经验”以“数据”形式存在,所以机器学习的主要内容就是关于在计算机上从数据中产生“模型”的算法。根据训练数据是否具有标记信息,分为监督学习和无监督学习,分别包含分类,回归和聚类。学习过程可以看作一个在所有假设组成的空间中进行搜索的过程。在学习过程中对某中类型假设的偏好,称为“归纳偏好”。归纳偏好——选择时的价值观。其中,奥卡姆剃刀:若有多个假设与观察一致,则选最简单的
- 读西瓜书笔记(二)模型评估与选择
謙卑
机器学习笔记机器学习recallROC过拟合验证集
读西瓜书笔记(二)模型评估与选择(一)误差与过拟合1.经验误差(empiricalerror)/训练误差(trainingerror)与泛化误差(generalizationerror)错误率(errorrate):通常我们把分类错误的样本数占样本总数的比例称为“错误率"。精度(accuracy):精度=1-错误率。即如果我们在m个样本中有a个样本分类错误,则错误率为E=a/m;相应的,1-a/m
- 机器学习笔记(第三章 线性模型)
xhy.
机器学习机器学习人工智能算法
西瓜书笔记(第3章线性模型)3.1基本形式线性模型(linearmodel)试图学得一个通过属性的线性组合来进行预测的函数,即f(x)=ω1x1+ω2x2+...+ωdxd+bf(x)=\omega_1x_1+\omega_2x_2+...+\omega_dx_d+bf(x)=ω1x1+ω2x2+...+ωdxd+b一般用向量形式写成f(x)=ωTx+bf(x)=\omega^Tx+bf(x)=ω
- 西瓜书笔记7:贝叶斯分类器
lagoon_lala
人工智能贝叶斯分类器机器学习
目录相关概率知识贝叶斯-全概率公式先验概率、后验概率、似然概率7.1贝叶斯决策论7.2极大似然估计极大似然估计公式均值方差估计公式推导概率知识复习高斯分布最大似然估计7.3朴素贝叶斯分类器朴素贝叶斯分类器的概念条件概率估计方法拉普拉斯修正7.4半朴素贝叶斯分类器ODE基本思想SPODETANAODE7.5贝叶斯网7.5.1结构三变量典型依赖关系有向分离7.5.2学习结构学习参数学习7.5.3推断吉
- 西瓜书笔记第一章 模型评估与选择
优雅一只猫
笔记机器学习人工智能经验分享数据挖掘
第一章模型的输入与评估西瓜书概念很多,由过去多次反复入门经验,先选择摘取重要概念作为笔记,不纠结其他概念,实际代码中用到再深入。机器学习关键是三步:1.构造输入2.选择数学模型(线性回归、神经网络等)3.评估输出并最小化误差(梯度下降),本章讨论模型如何选择输入数据和常见的评估指标1.输入数据选择1.留出法留出法将数据集D分为两个互斥集合,其中一个作为训练集S,另一个作为测试集T。注意,划分数据集
- 西瓜书笔记9: 聚类
lagoon_lala
人工智能聚类
目录9.1聚类任务9.2性能度量外部指标内部指标9.3距离计算有序属性的距离无序属性的距离属性距离变形9.4原型聚类k均值算法学习向量量化(LVQ)高斯混合聚类E步M步9.5密度聚类9.6层次聚类9.1聚类任务无监督学习(unsupervisedlearning)目标:揭示数据的内在性质及规律,为进一步的数据分析提供基础.聚类(clustering):将数据集中的样本划分为若干个不相交的子集.(子
- 西瓜数据集3.0_西瓜书笔记——第一章
weixin_39869043
西瓜数据集3.0西瓜数据集4.0
1.1引言1.2基本术语按照课文给的实例,关于西瓜的数据。数据集:整个所给的数据的集合称为数据集样本/示例:一个事件或者对象,这里的是一个西瓜属性/特征:事件或者对象的某方面的表现或性质,比如西瓜的色泽,根蒂,敲声属性值:属性的取值,比如色泽属性可以取青绿、乌黑属性空间/样本空间/输入空间:整个属性张成的空间,比如把上述的三个属性在一个三维坐标中表示出一个西瓜的三位空间,每一个西瓜都可以在在这个空
- 【西瓜书笔记】2. 对数几率回归
西风瘦马1912
《机器学习》西瓜书第15期
2.1对数几率回归模型指数族分布是一类分布的总称,该类分布的分布律(概率密度函数)的一般形式如下:p(y;η)=b(y)exp(ηTT(y)−a(η))=b(y)exp[η(θ)⋅T(y)−A(θ)]=b(y)exp(η(θ)⋅T(y)−A(θ))=b(y)exp(η(θ)⋅T(y)−A(θ))p(y;\eta)=b(y)\exp(\eta^{T}T(y)-a(\eta))\\=b(y)\
- 【西瓜书笔记】补充1:logistic回归及其损失函数,梯度下降推导
西风瘦马1912
《机器学习》西瓜书第15期逻辑回归随机梯度下降最大似然机器学习
Logistic回归理论知识补充建模流程假设我们建立一个二分类模型。假设有两个人A、B在争论如何对一个新样本xxx进行0-1二分类,他们两个分别对新样本进行打分,如果A的分数大于B的分数,则样本被预测为1,反之则被预测为0。假设两人的打分分数可以通过线性回归进行预测建模y1=θ1x+ϵ1,ϵ1∼N1(0,δ)y2=θ2x+ϵ2,ϵ2∼N2(0,δ)\begin{aligned}&y_{1}=\th
- 气象类Python编程实战案例项目汇总
qazwsxpy
气象python数据挖掘数据分析能源街景地图
目录1.气象数据科学语言教程(1)Python基础(2)Numpy教程(3)Pandas教程(4)Xarray实例(5)Dask教程2.气象数据读取/数据处理/数据分析/数值计算3.气象可视化(1)Matplotlib绘图教程(2)Cartopy绘图教程(3)Metpy绘图教程(4)Basemap库教程(5)气象可视化案例4.机器学习系列教程(1)周志华《机器学习》西瓜书笔记(2)吴恩达《机器学习
- 机器学习西瓜书笔记:软间隔和支持向量回归SVR
sunMoonStar_c
机器学习机器学习支持向量机
1、首先由SVM问题(最大间隔超平面模型):所有样本都可以正确分类的最优化问题,引入软间隔SVM(允许分类错误)的最优化问题,即需要添加损失函数(样本不满足约束的程度,或者说分类错误的程度),然后最优化。这里强调一下:超平面这个回归模型如何实现分类功能:套上sign函数。损失函数要找性质好的,即凸函数,连续损失函数不要单纯只反映分类正确和错误(0/1损失函数)。而是分类正确时,损失记为0,分类错误
- 西瓜书笔记之支持向量机
OeyOew_up
机器学习机器学习
这章节的内容对于小白来说属实有点难,把我难到无法用自己的语言去做笔记。好在互联网上的大神随处可见,寻到一篇“码农场”的一篇文章,虽然他整理的不是西瓜书,而是《统计学方法》的第七章,支持向量机。但是我觉得要比西瓜书更加容易理解。反复多嚼几遍,总会有意想不到的收获!下面奉上链接,大家一起学习ba!支持向量机--码农场关于公式推导的补充
- 【西瓜书笔记】5. 软间隔与支持向量机回归
西风瘦马1912
《机器学习》西瓜书第15期支持向量机回归机器学习
5.1软间隔SVM之前我们使用的是严格线性可分的硬间隔SVM:minw,b12∥w∥2s.t.1−yi(wTxi+b)⩽0,i=1,2,…,m\begin{array}{ll}\min_{\boldsymbol{w},b}&\frac{1}{2}\|\boldsymbol{w}\|^{2}\\\text{s.t.}&1-y_{i}\left(\boldsymbol{w}^{\mathrm{T}}
- 【西瓜书笔记】4. 支持向量机
西风瘦马1912
《机器学习》西瓜书第15期支持向量机机器学习算法
4.1超平面wTx+b=0\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}+b=0wTx+b=0法向量恒垂直于超平面和法向量方向相同的点(与w\boldsymbol{w}w夹角θ\thetaθ小于90度的向量)代入超平面方程恒大于等于0,否则恒小于等于0(与w\boldsymbol{w}w夹角θ\thetaθ大于90度的向量)法向量和位移项唯一确定一个超平面等倍缩
- 西瓜书笔记6:支持向量机
lagoon_lala
人工智能机器学习SVM
目录6.1间隔与支持向量6.2对偶问题求解w求解b6.3核函数非线性映射核函数6.4软间隔与正则化软间隔参数求解正则化6.5支持向量回归6.6核方法6.1间隔与支持向量分类学习基本想法:就是基于训练集D在样本空间中找到一个划分超平面、将不同类别的样本分开.超平面(w,b)的线性方程:$$\boldsymbol{w}^T\boldsymbol{x}+b=0\\其中\boldsymbol{w}=(w_
- 西瓜书笔记第五章-神经网络
weixin_41872340
西瓜书
chapter55.1神经元模型定义:神经网络是由具有适应性的,简单单元组成的,广泛并行互联的网络,它的组织能够模拟生物神经系统对真实世界物体所做出的交互反映。神经网络的基本单元是神经元模型,当一个神经元兴奋时,会向相连的神经元发送化学介质,从而改变神经元内的电位,如果某神经元的电位超过了阈值,那么就会兴奋起来(阈值就是平时所说的偏差bias)。M-P神经元模型:模型中,神经元接受其它神经元传来的
- 西瓜书笔记(第六章 支持向量机)
xhy.
机器学习支持向量机算法机器学习
西瓜书笔记(第六章支持向量机)6.1间隔与支持向量直观上看,应该去找位于两类训练样本“正中间”的划分超平面,即图6.1中红色的那个,因为该划分超平面对训练样本局部扰动的“容忍”性最好.例如,由于训练集的局限性或噪声的因素,训练集外的样本可能比图6.1中的训练样本更接近两个类的分隔界,这将使许多划分超平面出现错误,而红色的超平面受影响最小,换言之,这个划分超平面所产生的分类结果是最鲁棒的,对未见示例
- 西瓜书笔记Chapter1&2
名侦探波本
机器学习人工智能
序言南瓜书(机器学习公式详解)作者谢文睿老师在南瓜书前言中如此写到:“周志华老师的《机器学习》(西瓜书)是机器学习领域的经典入门教材之一,周老师为了使尽可能多的读者通过西瓜书对机器学习有所了解,所以在书中对部分公式的推导细节没有详述,但是这对那些想深究公式推导细节的读者来说可能“不太友好”,本书旨在对西瓜书里比较难理解的公式加以解析,以及对部分公式补充具体的推导细节。”读到这里,大家可能会疑问为啥
- 机器学习西瓜书笔记:神经网络:BP算法公式推导
sunMoonStar_c
机器学习机器学习神经网络
1、变量符号含义1、训练集D={(x⃗1,y⃗1),(x⃗2,y⃗2),...,(x⃗m,y⃗m)}D=\{(\vec{x}_1,\vec{y}_1),(\vec{x}_2,\vec{y}_2),...,(\vec{x}_m,\vec{y}_m)\}D={(x1,y1),(x2,y2),...,(xm,ym)},共m个样例2、x⃗i∈Rd,y⃗i∈Rd\vec{x}_i\in\mathbb{R}^
- 西瓜书笔记5:神经网络
lagoon_lala
人工智能神经网络
目录5.1神经元模型5.2感知机与多层网络感知机感知机模型感知机学习策略感知机学习算法多层网络5.3误差逆传播算法标准BP(误差逆传播)算法变量符号公式推导工作流程累积BP算法5.4全局最小与局部极小跳出局部极小的技术5.5其他常见神经网络5.5.1RBF网络5.5.2ART网络5.5.3SOM网络5.5.4级联相关网络5.5.5Elman网络5.5.6Boltzmann机5.6深度学习5.1神经
- 西瓜书笔记16-2:逆强化学习
lagoon_lala
人工智能人工智能逆强化学习
感谢康傲同学的深刻讨论与精彩讲解.目录逆强化学习概述强化学习与逆强化区别逆向强化学习分类学徒学习学徒学习思想相关定义算法描述学徒算法找最优策略\(\tilde{\pi}\)逆强化学习概述参考:https://zhuanlan.zhihu.com/p/26682811强化学习与逆强化区别强化学习是求累积回报期望最大时的最优策略,在求解过程中立即回报是人为给定的。人在完成具体任务时,指定回报函数的方法
- 周志华西瓜书笔记 1.2 基本术语
0ng
西瓜书笔记
我原本想着一边读一边删减一些以后好复习的,谁知这书一句废话没有,一晚上敲了个寂寞1.2基本术语关于西瓜的数据:(色泽===青绿;根蒂===蜷缩;敲声===浊响)(色泽===乌黑;根蒂===稍蜷;敲声===沉闷)(色泽===浅白;根蒂===硬挺;敲声===清脆) 一对括号内是一条记录,"===“意思是"取值为”. 一组记录的集合称为一个"数据集"(dataset),每条记录是关于一个事件或对象(
- 读西瓜书笔记(一)绪论
謙卑
笔记机器学习机器学习笔记
读西瓜书笔记(一)绪论(一)什么是机器学习机器学习致力于研究如何通过计算的手段,利用经验来改善自身的性能。机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”的算法,即“学习算法”,有了学习算法,我们把经验数据提供给学习算法,它就能基于这些数据产生模型,在面对新的情况时,模型就会给出相应的判断。有文献用“模型”指全局性结果(如一颗决策树),而用“模式”指局部性结果通俗的理解机器学习(买西
- 西瓜书笔记系列 - 第1章 绪论 - 1.2 基本术语
FSHelix
读书笔记机器学习
西瓜书笔记系列-目录1.2基本术语术语集见文末。因为是边读边做的笔记,且是第一次读这本书的笔记,所以除了零零散散添加的想法以外,做得有点像单纯的转述摘抄了。如这一组关于西瓜的记录:(色泽=青绿;根蒂=蜷缩;敲声=浊响),(色泽=乌黑;根蒂=稍蜷;敲声=沉闷),……这些记录是关于某一个事物的描述,称为示例或样本,它们构成的集合称为数据集。其中如"色泽"、“根蒂”、“敲声”,反映了事物在某方面的性质,
- 2、周志华西瓜书笔记:模型评估与选择
Zzzybfly
机器学习
2.1经验误差与过拟合错误率:分类错误的样本数占样本总数的比例。精度:1-错误率=精度误差:学习器的实际预测输出与样本的真实输出之间的差异。训练误差/经验误差:学习器在训练集上的误差。泛化误差:在新样本上的误差。过拟合:学习器学习能力太好导致把训练本身的特点当作所有样本都具有的特点,导致泛化能力下降。2.2评估方法通常,我们通过实验测试学习器的泛化误差来进行评估进而做出选择,以测试集的测试误差作为
- 安装数据库首次应用
Array_06
javaoraclesql
可是为什么再一次失败之后就变成直接跳过那个要求
enter full pathname of java.exe的界面
这个java.exe是你的Oracle 11g安装目录中例如:【F:\app\chen\product\11.2.0\dbhome_1\jdk\jre\bin】下的java.exe 。不是你的电脑安装的java jdk下的java.exe!
注意第一次,使用SQL D
- Weblogic Server Console密码修改和遗忘解决方法
bijian1013
Welogic
在工作中一同事将Weblogic的console的密码忘记了,通过网上查询资料解决,实践整理了一下。
一.修改Console密码
打开weblogic控制台,安全领域 --> myrealm -->&n
- IllegalStateException: Cannot forward a response that is already committed
Cwind
javaServlets
对于初学者来说,一个常见的误解是:当调用 forward() 或者 sendRedirect() 时控制流将会自动跳出原函数。标题所示错误通常是基于此误解而引起的。 示例代码:
protected void doPost() {
if (someCondition) {
sendRedirect();
}
forward(); // Thi
- 基于流的装饰设计模式
木zi_鸣
设计模式
当想要对已有类的对象进行功能增强时,可以定义一个类,将已有对象传入,基于已有的功能,并提供加强功能。
自定义的类成为装饰类
模仿BufferedReader,对Reader进行包装,体现装饰设计模式
装饰类通常会通过构造方法接受被装饰的对象,并基于被装饰的对象功能,提供更强的功能。
装饰模式比继承灵活,避免继承臃肿,降低了类与类之间的关系
装饰类因为增强已有对象,具备的功能该
- Linux中的uniq命令
被触发
linux
Linux命令uniq的作用是过滤重复部分显示文件内容,这个命令读取输入文件,并比较相邻的行。在正常情 况下,第二个及以后更多个重复行将被删去,行比较是根据所用字符集的排序序列进行的。该命令加工后的结果写到输出文件中。输入文件和输出文件必须不同。如 果输入文件用“- ”表示,则从标准输入读取。
AD:
uniq [选项] 文件
说明:这个命令读取输入文件,并比较相邻的行。在正常情况下,第二个
- 正则表达式Pattern
肆无忌惮_
Pattern
正则表达式是符合一定规则的表达式,用来专门操作字符串,对字符创进行匹配,切割,替换,获取。
例如,我们需要对QQ号码格式进行检验
规则是长度6~12位 不能0开头 只能是数字,我们可以一位一位进行比较,利用parseLong进行判断,或者是用正则表达式来匹配[1-9][0-9]{4,14} 或者 [1-9]\d{4,14}
&nbs
- Oracle高级查询之OVER (PARTITION BY ..)
知了ing
oraclesql
一、rank()/dense_rank() over(partition by ...order by ...)
现在客户有这样一个需求,查询每个部门工资最高的雇员的信息,相信有一定oracle应用知识的同学都能写出下面的SQL语句:
select e.ename, e.job, e.sal, e.deptno
from scott.emp e,
(se
- Python调试
矮蛋蛋
pythonpdb
原文地址:
http://blog.csdn.net/xuyuefei1988/article/details/19399137
1、下面网上收罗的资料初学者应该够用了,但对比IBM的Python 代码调试技巧:
IBM:包括 pdb 模块、利用 PyDev 和 Eclipse 集成进行调试、PyCharm 以及 Debug 日志进行调试:
http://www.ibm.com/d
- webservice传递自定义对象时函数为空,以及boolean不对应的问题
alleni123
webservice
今天在客户端调用方法
NodeStatus status=iservice.getNodeStatus().
结果NodeStatus的属性都是null。
进行debug之后,发现服务器端返回的确实是有值的对象。
后来发现原来是因为在客户端,NodeStatus的setter全部被我删除了。
本来是因为逻辑上不需要在客户端使用setter, 结果改了之后竟然不能获取带属性值的
- java如何干掉指针,又如何巧妙的通过引用来操作指针————>说的就是java指针
百合不是茶
C语言的强大在于可以直接操作指针的地址,通过改变指针的地址指向来达到更改地址的目的,又是由于c语言的指针过于强大,初学者很难掌握, java的出现解决了c,c++中指针的问题 java将指针封装在底层,开发人员是不能够去操作指针的地址,但是可以通过引用来间接的操作:
定义一个指针p来指向a的地址(&是地址符号):
- Eclipse打不开,提示“An error has occurred.See the log file ***/.log”
bijian1013
eclipse
打开eclipse工作目录的\.metadata\.log文件,发现如下错误:
!ENTRY org.eclipse.osgi 4 0 2012-09-10 09:28:57.139
!MESSAGE Application error
!STACK 1
java.lang.NoClassDefFoundError: org/eclipse/core/resources/IContai
- spring aop实例annotation方法实现
bijian1013
javaspringAOPannotation
在spring aop实例中我们通过配置xml文件来实现AOP,这里学习使用annotation来实现,使用annotation其实就是指明具体的aspect,pointcut和advice。1.申明一个切面(用一个类来实现)在这个切面里,包括了advice和pointcut
AdviceMethods.jav
- [Velocity一]Velocity语法基础入门
bit1129
velocity
用户和开发人员参考文档
http://velocity.apache.org/engine/releases/velocity-1.7/developer-guide.html
注释
1.行级注释##
2.多行注释#* *#
变量定义
使用$开头的字符串是变量定义,例如$var1, $var2,
赋值
使用#set为变量赋值,例
- 【Kafka十一】关于Kafka的副本管理
bit1129
kafka
1. 关于request.required.acks
request.required.acks控制者Producer写请求的什么时候可以确认写成功,默认是0,
0表示即不进行确认即返回。
1表示Leader写成功即返回,此时还没有进行写数据同步到其它Follower Partition中
-1表示根据指定的最少Partition确认后才返回,这个在
Th
- lua统计nginx内部变量数据
ronin47
lua nginx 统计
server {
listen 80;
server_name photo.domain.com;
location /{set $str $uri;
content_by_lua '
local url = ngx.var.uri
local res = ngx.location.capture(
- java-11.二叉树中节点的最大距离
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class MaxLenInBinTree {
/*
a. 1
/ \
2 3
/ \ / \
4 5 6 7
max=4 pass "root"
- Netty源码学习-ReadTimeoutHandler
bylijinnan
javanetty
ReadTimeoutHandler的实现思路:
开启一个定时任务,如果在指定时间内没有接收到消息,则抛出ReadTimeoutException
这个异常的捕获,在开发中,交给跟在ReadTimeoutHandler后面的ChannelHandler,例如
private final ChannelHandler timeoutHandler =
new ReadTim
- jquery验证上传文件样式及大小(好用)
cngolon
文件上传jquery验证
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="jquery1.8/jquery-1.8.0.
- 浏览器兼容【转】
cuishikuan
css浏览器IE
浏览器兼容问题一:不同浏览器的标签默认的外补丁和内补丁不同
问题症状:随便写几个标签,不加样式控制的情况下,各自的margin 和padding差异较大。
碰到频率:100%
解决方案:CSS里 *{margin:0;padding:0;}
备注:这个是最常见的也是最易解决的一个浏览器兼容性问题,几乎所有的CSS文件开头都会用通配符*来设
- Shell特殊变量:Shell $0, $#, $*, $@, $?, $$和命令行参数
daizj
shell$#$?特殊变量
前面已经讲到,变量名只能包含数字、字母和下划线,因为某些包含其他字符的变量有特殊含义,这样的变量被称为特殊变量。例如,$ 表示当前Shell进程的ID,即pid,看下面的代码:
$echo $$
运行结果
29949
特殊变量列表 变量 含义 $0 当前脚本的文件名 $n 传递给脚本或函数的参数。n 是一个数字,表示第几个参数。例如,第一个
- 程序设计KISS 原则-------KEEP IT SIMPLE, STUPID!
dcj3sjt126com
unix
翻到一本书,讲到编程一般原则是kiss:Keep It Simple, Stupid.对这个原则深有体会,其实不仅编程如此,而且系统架构也是如此。
KEEP IT SIMPLE, STUPID! 编写只做一件事情,并且要做好的程序;编写可以在一起工作的程序,编写处理文本流的程序,因为这是通用的接口。这就是UNIX哲学.所有的哲学真 正的浓缩为一个铁一样的定律,高明的工程师的神圣的“KISS 原
- android Activity间List传值
dcj3sjt126com
Activity
第一个Activity:
import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Map;import android.app.Activity;import android.content.Intent;import android.os.Bundle;import a
- tomcat 设置java虚拟机内存
eksliang
tomcat 内存设置
转载请出自出处:http://eksliang.iteye.com/blog/2117772
http://eksliang.iteye.com/
常见的内存溢出有以下两种:
java.lang.OutOfMemoryError: PermGen space
java.lang.OutOfMemoryError: Java heap space
------------
- Android 数据库事务处理
gqdy365
android
使用SQLiteDatabase的beginTransaction()方法可以开启一个事务,程序执行到endTransaction() 方法时会检查事务的标志是否为成功,如果程序执行到endTransaction()之前调用了setTransactionSuccessful() 方法设置事务的标志为成功则提交事务,如果没有调用setTransactionSuccessful() 方法则回滚事务。事
- Java 打开浏览器
hw1287789687
打开网址open浏览器open browser打开url打开浏览器
使用java 语言如何打开浏览器呢?
我们先研究下在cmd窗口中,如何打开网址
使用IE 打开
D:\software\bin>cmd /c start iexplore http://hw1287789687.iteye.com/blog/2153709
使用火狐打开
D:\software\bin>cmd /c start firefox http://hw1287789
- ReplaceGoogleCDN:将 Google CDN 替换为国内的 Chrome 插件
justjavac
chromeGooglegoogle apichrome插件
Chrome Web Store 安装地址: https://chrome.google.com/webstore/detail/replace-google-cdn/kpampjmfiopfpkkepbllemkibefkiice
由于众所周知的原因,只需替换一个域名就可以继续使用Google提供的前端公共库了。 同样,通过script标记引用这些资源,让网站访问速度瞬间提速吧
- 进程VS.线程
m635674608
线程
资料来源:
http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001397567993007df355a3394da48f0bf14960f0c78753f000 1、Apache最早就是采用多进程模式 2、IIS服务器默认采用多线程模式 3、多进程优缺点 优点:
多进程模式最大
- Linux下安装MemCached
字符串
memcached
前提准备:1. MemCached目前最新版本为:1.4.22,可以从官网下载到。2. MemCached依赖libevent,因此在安装MemCached之前需要先安装libevent。2.1 运行下面命令,查看系统是否已安装libevent。[root@SecurityCheck ~]# rpm -qa|grep libevent libevent-headers-1.4.13-4.el6.n
- java设计模式之--jdk动态代理(实现aop编程)
Supanccy2013
javaDAO设计模式AOP
与静态代理类对照的是动态代理类,动态代理类的字节码在程序运行时由Java反射机制动态生成,无需程序员手工编写它的源代码。动态代理类不仅简化了编程工作,而且提高了软件系统的可扩展性,因为Java 反射机制可以生成任意类型的动态代理类。java.lang.reflect 包中的Proxy类和InvocationHandler 接口提供了生成动态代理类的能力。
&
- Spring 4.2新特性-对java8默认方法(default method)定义Bean的支持
wiselyman
spring 4
2.1 默认方法(default method)
java8引入了一个default medthod;
用来扩展已有的接口,在对已有接口的使用不产生任何影响的情况下,添加扩展
使用default关键字
Spring 4.2支持加载在默认方法里声明的bean
2.2
将要被声明成bean的类
public class DemoService {