- 机器学习学习笔记(吴恩达)(第三课第一周)(无监督算法,K-means、异常检测)
kgbkqLjm
吴恩达机器学习2022机器学习算法学习
欢迎聚类算法:无监督学习:聚类、异常检测推荐算法:强化学习:聚类(Clustering)聚类算法:查看大量数据点并自动找到彼此相关或相似的数据点。是一种无监督学习算法聚类与二院监督学习算法对比:无监督:(聚类是无监督学习算法之一)聚类算法应用:如相似的新闻文章组合,市场细分,DNA数据分析,天文数据分析(星系、天体结构)K-means算法是一种常用的聚类算法原理概述【K-means工作原理过程】(
- 机器学习学习笔记(八)多项式回归与模型泛化
下雨天的小白鞋
对非线性的数据进行处理,相应的预测----添加新的特征:原有的特征进行多项式组合scikit-learn中的多项式回归PolynomialFeatures构建特征导包:fromsklearn.preprocessingimportPolynomialFeatures实例:poly=PolynomialFeatures(degree=2)##最多二次幂特征poly.fit(X)X2=poly.tra
- 机器学习学习笔记——数学篇
小胡爱喝水
机器学习
数学中常见的argmin,argmax表示的是什么意思arg是英文单词argument(自变量)的缩写,所以从字面意义上也就可以看出其代表的意思就是求对应自变量的最大最小值。例如:(w∗,b∗w^*,b^*w∗,b∗)=argmin∑1m\sum_1^m∑1m(f(xi)−yif(x_i)-y_if(xi)−yi)求均方误差最小化时的w∗,b∗w^*,b^*w∗,b∗。argmax类似。
- 机器学习学习笔记(3)——量纲与无量纲,标准化、归一化、正则化
野指针小李
数学机器学习机器学习标准化归一化正则化量纲
量纲、无量纲,标准化、归一化、正则化是我百度了很多次都不进脑子的知识,所以我决定还是放在博客上面。不过鉴于我查阅了很多资料,说是有许多的坑,所以我也不清楚我的理解和解释是否是坑,具体的就留给各位来帮忙评判了!目录1量纲与无量纲1.1量纲1.2无量纲2标准化3归一化4正则化5总结6参考1量纲与无量纲1.1量纲量纲我觉得最重要的一句话是:物理量的大小与单位有关。从这句话我们来思考下最核心的两个单词:大
- 机器学习学习笔记 1 Bagging模型
锋锋的快乐小窝
机器学习学习笔记机器学习笔记决策树
Bagging模型Bagging全称(bootstrapaggregation)并行训练一堆分类器的集成方法。每个基模型可以分别、独立、互不影响地生成最典型的代表就是随机森林随机:数据采样随机,特征选择随机森林:很多决策树并行放在一起由于二重随机性,使得每个树基本上都不会一样,最终的结果也会不一样之所以随机选择,是要保证泛化能力,如果树都一样,那就失去参考价值随机森林(RF)的优势:它能够处理很高
- 李宏毅机器学习学习笔记——自注意力机制
jolando
学习笔记机器学习深度学习
self-attention应用场景为什么要使用Self-attention?Self-attention计算过程PositionalEncodingSelf-attention的变体Multi-headSelf-attentionTruncatedSelf-attentionSelf-attention与其他神经网络的比较Self-attentionv.s.CNNSelf-attentionv.
- 机器学习学习笔记——第一章:绪论
福旺旺
机器学习机器学习
机器学习机器学习学习笔记——第一章:绪论文章目录机器学习机器学习学习笔记——第一章:绪论机器学习即为构建一个机器调参的映射函数。要进行机器学习,先要有数据。一、基础术语1.1、数据准备阶段1.2、学得模型阶段1.3、测试模型阶段1.4、典型的机器学习过程1.5、总结二、假设空间三、归纳偏好四、机器学习理论五、机器学习的现实应用机器学习即为构建一个机器调参的映射函数。要进行机器学习,先要有数据。一、
- 机器学习学习笔记——第二章:模型评估与选择
福旺旺
机器学习机器学习人工智能
机器学习机器学习学习笔记——第二章:模型评估与选择文章目录机器学习一、经验误差与过拟合1.1、经验误差与泛化误差1.2、过拟合与欠拟合二、三个问题三、评估方法3.1、留出法(hold-out)3.2、k折-交叉验证法(k-foldcrossvalidation)3.3、自助法(bootstrap)3.4、调参与最终模型四、性能度量4.1、错误率与精度4.2、查准率、查全率与F14.3、ROC与AU
- Python机器学习实践(一)多项式拟合(简单房价预测)
AiTingDeTong
Python机器学习python机器学习人工智能数据分析
Python机器学习学习笔记与实践环境:win10+Anaconda3.8例子一源自《Python与机器学习实战》—何宇健任务:现有47个房子的面积和价格,需要建立一个模型对房价进行预测。1、获取和处理数据房子的面积与价格对应的数据点击下面获得:点击此处获取导入库,并读取文本文件的数据:importnumpyasnpimportmatplotlib.pyplotasplt#读取房子面积和对应的价格
- 【机器学习学习笔记】机器学习入门&监督学习
MikeBennington
机器学习学习笔记机器学习学习人工智能
1.机器学习入门1.1WhatisMachineLearning?"Fieldofstudythatgivescomputerstheabilitytolearnwithoutbeingexplicitlyprogrammed."——ArthurSamuel(1959)亚瑟·萨缪尔:跳棋程序编写者常用机器学习算法:Supervisedlearning(moreimportant)Unsupervi
- 【李宏毅机器学习】Gradient Descent_1 梯度下降(p5、p6、p7 )学习笔记
duanyuchen
MachineLearning机器学习李宏毅学习笔记
李宏毅机器学习学习笔记汇总课程链接文章目录ReviewGradientDescentTipsTip1:Tuningyourlearningrate小心微调你的学习率Tip2StochasticGradientDescentSGD随机梯度下降Tip3FeatureScaling特征缩放GradientDescentReview在第三步,找一个最好的function,解一个optimization最优
- python机器学习学习笔记(六)
weixin_46753186
python机器学习python数据分析支持向量机机器学习
支持向量机分类实例:用SVM分类器对Iris数据集分析并绘制分类图1.线性importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimportsvm,datasetsiris=datasets.load_iris()x=iris.data[:,:2]#iris数据萼片的长和宽y=iris.targetsvc=svm.SVC(kernel='lin
- 机器学习学习笔记(二)环境搭建
下雨天的小白鞋
语言基础:Python3IDE:Pycharm集成环境:anacoda一.Anacoda下载地址:https://www.anaconda.com/download/下载页面下载-安装安装成功后打开AnacondaNavigator选择jupyterlaunch等会会出现二.Pycharm下载地址:https://www.jetbrains.com/pycharm/download/#sectio
- 机器学习学习笔记(一)基础
下雨天的小白鞋
一.开发环境框架:scikit-learn工具:pycharm,ANACONDA二.开发基础2.1概念数据集下载:scikit-learn内置数据集或者直接下载的数据集:数据整体样本:每一行数据特征:除最后一列,每一列表达样本的一个特征标记:最后一列特征值、特征向量、特征空间2.2基本任务:分类任务、回归任务2.2.1分类任务二分类任务:例如:判断邮件是否为垃圾邮件多分类任务:图像识别,数字识别多
- 机器学习学习笔记2(Ng课程cs229)
-慢慢-
AI机器学习学习笔记cs229高斯混合模型朴素贝叶斯
牛顿方法简单的来说就是通过求当前点的导数得到下一个点.用到的性质是导数值等于该点切线和横轴夹角的正切值.极大似然估计收敛速度:quadraticconversions二次收敛θ为矩阵时每次迭代都需要重新计算H->nxn特征较多时计算量比较大极大似然估计可以推导:高斯分布=>最小二乘法伯努利分布=>logistic回归指数分布族exponentialfamilydistributionp(y;η)=
- python机器学习学习笔记——学习资源汇总
那么CHEN
pythonpython机器学习人工智能编程语言大数据
参考资料Python集成开发环境(IDE)[1]IDLE:Python解释器默认工具[2]VisualStudioCode:https://code.visualstudio.com/[3]PyCharm:https://www.jetbrains.com/pycharm/[4]Anaconda:https://www.continuum.io/参考教程[1]《Python语言程序设计基础(第2版
- 机器学习学习笔记之——模型评估与改进之交叉验证和网格搜索
前丨尘忆·梦
tensorflow深度学习机器学习
交叉验证与网格搜索前面讨论了监督学习和无监督学习的基本原理,并探索了多种机器学习算法,本章我们深入学习模型评估与参数选择。我们将重点介绍监督方法,包括回归与分类,因为在无监督学习中,模型评估与选择通常是一个非常定性的过程。到目前为止,为了评估我们的监督模型,我们使用train_test_split函数将数据集划分为训练集和测试集,在训练集上调用fit方法来构建模型,并且在测试集上用score方法来
- python机器学习学习笔记(五)
weixin_46753186
python机器学习python机器学习支持向量机数据分析
非线性支持向量机分类1.三次多项式用多项式曲线把决策空间分成两部分kernel='poly',degree为多项式次数importnumpyasnpimportmatplotlib.pyplotaspltfromsklearnimportsvmx=np.array([[1,3],[1,2],[1,1.5],[1.5,2],[2,3],[2.5,1.5],[2,1],[3,1],[3,2],[3.5
- 机器学习学习笔记week1
yangqingao
深度学习机器学习
week11引言1.1机器学习是什么?1.2监督学习1.3无监督学习2单变量线性回归2.1模型表示2.2代价函数2.3代价函数的直观理解I2.4代价函数的直观理解II2.5梯度下降2.6梯度下降的直观理解2.7梯度下降的线性回归3线性代数回顾3.1矩阵和向量3.2加法和标量乘法3.3矩阵向量乘法3.4矩阵乘法3.5矩阵乘法的性质3.6逆、转置1引言1.1机器学习是什么?ArthurSamuel:在
- 机器学习 学习笔记(持续更新)
Include everything
学习算法
机器学习学习笔记一、导论1.1什么是机器学习? 机器学习是在没有明确设置的情况下使计算机具有学习能力的研究领域。(ArthurSamuel-1959) 计算机程序从经验E(计算机自己与自己下成千上百万次棋)中学习,解决某一任务T(下跳棋),进行某一性能度量P(与新对手玩跳棋时赢的概率),通过P测定在T上的表现因经验E而提高的程度。(TomMitchell-1998) 机器学习算法最主要分为监
- 机器学习学习笔记(1)
后季暖
字典特征提取第一列表示北京第二列表示上海第三列表示深圳第四列表示温度前面三列是的话用1不是的话用0什么时候用稀疏矩阵:比如上面这种情况当你的城市很多的情况下那这样就会出现大量的0而系数矩阵只存储不是0的位置可以节省大量空间为什么采用这种表示方法呢?首先我们来看假如要分类:人是1企鹅是2章鱼是3那么这样数字表示的就存在优先级不如按这种办法来pclass是一等舱二等舱三等舱这种字典特征抽取的应用场景:
- 机器学习学习笔记——batchsize越大越好?
phily123
机器学习学习笔记深度学习神经网络机器学习
batchsize不是越大越好使用mini-batch好处:提高了运行效率,相比batch-GD的每个epoch只更新一次参数,使用mini-batch可以在一个epoch中多次更新参数,加速收敛。解决了某些任务中,训练集过大,无法一次性读入内存的问题。虽然第一点是mini-batch提出的最初始的原因,但是后来人们发现,使用mini-batch还有个好处,即每次更新时由于没有使用全量数据而仅仅使
- 机器学习学习笔记(一)
图南zzz
python机器学习人工智能算法
目录机器学习笔记(一)一、模型评估二、监督学习三、无监督学习四、单变量线性回归(LinearRegressionwithOneVariable)3.1代价函数(平方误差函数)(损失函数)3.2梯度下降3.3梯度下降的线性回归五、多变量线性回归(LinearRegressionwithMultipleVariables)4.1多维特征4.2多变量梯度下降4.3梯度下降之特征缩放六、正规方程六、逻辑回
- 机器学习学习笔记之——监督学习之线性模型
前丨尘忆·梦
tensorflow深度学习机器学习
线性模型线性模型利用输入特征的线性函数(linearfunction)进行预测。1、用于回归的线性模型对于回归问题,线性模型预测的一般公式如下:y^=w[0]∗x[0]+w[1]∗x[1]+...+w[p]∗x[p]+b\hat{y}=w[0]*x[0]+w[1]*x[1]+...+w[p]*x[p]+by^=w[0]∗x[0]+w[1]∗x[1]+...+w[p]∗x[p]+b这里x[0]到x[
- 机器学习学习笔记(一)——多元线性回归(Multivariate Linear Regression)
lancetop-stardrms
机器学习机器学习
多元线性回归(multivariatelinearregression):在线性回归问题(Linearregression)中,引入多个特征变量(MultipleFeatures)作为输入,也被称为“多元线性回归(MultivariateLinearRegression)”.符号定义:假设函数(hypothesisfunction):Themultivariableformofthehypothe
- 吴恩达机器学习学习笔记——Week 2——多元线性回归(Multivariate Linear Regression)
预见未来to50
机器学习深度学习(MLDeepLearning)
一、课件及课堂练习1.多个特征值(多变量)课堂练习:2.多元梯度下降课堂练习:3.梯度下降实践1——特征值缩放(均值归一化)课堂练习:4.梯度下降实践2——学习率课堂练习:5.特征数量及多项式回归课堂练习:6.标准方程课堂练习:7.标准方程法可能遇到不可逆问题二、内容概要1.多个特征值2.多元梯度下降3.梯度下降实践1——特征值缩放4.梯度下降实践2——学习率5.特征数量及多项式回归6.标准方程7
- 机器学习学习笔记之:loss function损失函数及activation function激活函数
csdshelton
之所以把损失函数和激活函数放在一起做个总结,是因为本身这两都带函数,都是机器学习中的内容,很容易混在一起,第二点,这两者总是一起出现,根据任务的不同,可能出现不同的排列组合。因此想一起整理一下。不同的机器学习方法的损失函数DifferentLossfunctionsfordifferentmachinelearningMethods不同的机器学习方法,损失函数不一样,quadraticloss(平
- Python机器学习学习笔记之——引言
前丨尘忆·梦
tensorflow深度学习机器学习
引言mglearn库的下载地址:链接:https://pan.baidu.com/s/1FkRGBFgtjqsZTikLEJbtzg提取码:4db0机器学习是从数据中提取知识。它是统计学、人工智能和计算机科学交叉的研究领域,也被称为预测分析或统计学习。1、为何选择机器学习在“智能”应用早期,许多系统使用人为制定的“if”和“else”决策规则来处理数据,或根据用户输入的内容进行调整。但人为制定决策
- 《机器学习》周志华(西瓜书)学习笔记 第八章 集成学习
Sundm@lhq
机器学习西瓜书学习笔记机器学习学习笔记集成学习周志华
机器学习学习笔记4总目录第八章集成学习8.1个体与集成集成学习(ensemblelearning)通过构建并结合多个学习器来完成学习任务,有时也被称为多分类器系统(multi-classifiersystem)、基于委员会的学习(committee-basedlearning)等.集成学习的一般结构:先产生一组"个体学习器"(individuallearner),再用某种策略将它们结合起来。同质集
- 【李宏毅机器学习】Recurrent Neural Network Part1 循环神经网络(p20) 学习笔记
duanyuchen
MachineLearning机器学习李宏毅学习笔记
李宏毅机器学习学习笔记汇总课程链接文章目录ExampleApplicationSlotFilling把词用向量来表示的方法1-of-Nencoding/one-hotBeyond1-of-Nencoding存在的问题RecurrentNeuralNetwork(RNN)ExampleRNN处理slotsfilling问题Ofcourseitcanbedeep...RNN的变形ElmanNetwor
- mongodb3.03开启认证
21jhf
mongodb
下载了最新mongodb3.03版本,当使用--auth 参数命令行开启mongodb用户认证时遇到很多问题,现总结如下:
(百度上搜到的基本都是老版本的,看到db.addUser的就是,请忽略)
Windows下我做了一个bat文件,用来启动mongodb,命令行如下:
mongod --dbpath db\data --port 27017 --directoryperdb --logp
- 【Spark103】Task not serializable
bit1129
Serializable
Task not serializable是Spark开发过程最令人头疼的问题之一,这里记录下出现这个问题的两个实例,一个是自己遇到的,另一个是stackoverflow上看到。等有时间了再仔细探究出现Task not serialiazable的各种原因以及出现问题后如何快速定位问题的所在,至少目前阶段碰到此类问题,没有什么章法
1.
package spark.exampl
- 你所熟知的 LRU(最近最少使用)
dalan_123
java
关于LRU这个名词在很多地方或听说,或使用,接下来看下lru缓存回收的实现
1、大体的想法
a、查询出最近最晚使用的项
b、给最近的使用的项做标记
通过使用链表就可以完成这两个操作,关于最近最少使用的项只需要返回链表的尾部;标记最近使用的项,只需要将该项移除并放置到头部,那么难点就出现 你如何能够快速在链表定位对应的该项?
这时候多
- Javascript 跨域
周凡杨
JavaScriptjsonp跨域cross-domain
 
- linux下安装apache服务器
g21121
apache
安装apache
下载windows版本apache,下载地址:http://httpd.apache.org/download.cgi
1.windows下安装apache
Windows下安装apache比较简单,注意选择路径和端口即可,这里就不再赘述了。 2.linux下安装apache:
下载之后上传到linux的相关目录,这里指定为/home/apach
- FineReport的JS编辑框和URL地址栏语法简介
老A不折腾
finereportweb报表报表软件语法总结
JS编辑框:
1.FineReport的js。
作为一款BS产品,browser端的JavaScript是必不可少的。
FineReport中的js是已经调用了finereport.js的。
大家知道,预览报表时,报表servlet会将cpt模板转为html,在这个html的head头部中会引入FineReport的js,这个finereport.js中包含了许多内置的fun
- 根据STATUS信息对MySQL进行优化
墙头上一根草
status
mysql 查看当前正在执行的操作,即正在执行的sql语句的方法为:
show processlist 命令
mysql> show global status;可以列出MySQL服务器运行各种状态值,我个人较喜欢的用法是show status like '查询值%';一、慢查询mysql> show variab
- 我的spring学习笔记7-Spring的Bean配置文件给Bean定义别名
aijuans
Spring 3
本文介绍如何给Spring的Bean配置文件的Bean定义别名?
原始的
<bean id="business" class="onlyfun.caterpillar.device.Business">
<property name="writer">
<ref b
- 高性能mysql 之 性能剖析
annan211
性能mysqlmysql 性能剖析剖析
1 定义性能优化
mysql服务器性能,此处定义为 响应时间。
在解释性能优化之前,先来消除一个误解,很多人认为,性能优化就是降低cpu的利用率或者减少对资源的使用。
这是一个陷阱。
资源时用来消耗并用来工作的,所以有时候消耗更多的资源能够加快查询速度,保持cpu忙绿,这是必要的。很多时候发现
编译进了新版本的InnoDB之后,cpu利用率上升的很厉害,这并不
- 主外键和索引唯一性约束
百合不是茶
索引唯一性约束主外键约束联机删除
目标;第一步;创建两张表 用户表和文章表
第二步;发表文章
1,建表;
---用户表 BlogUsers
--userID唯一的
--userName
--pwd
--sex
create
- 线程的调度
bijian1013
java多线程thread线程的调度java多线程
1. Java提供一个线程调度程序来监控程序中启动后进入可运行状态的所有线程。线程调度程序按照线程的优先级决定应调度哪些线程来执行。
2. 多数线程的调度是抢占式的(即我想中断程序运行就中断,不需要和将被中断的程序协商)
a) 
- 查看日志常用命令
bijian1013
linux命令unix
一.日志查找方法,可以用通配符查某台主机上的所有服务器grep "关键字" /wls/applogs/custom-*/error.log
二.查看日志常用命令1.grep '关键字' error.log:在error.log中搜索'关键字'2.grep -C10 '关键字' error.log:显示关键字前后10行记录3.grep '关键字' error.l
- 【持久化框架MyBatis3一】MyBatis版HelloWorld
bit1129
helloworld
MyBatis这个系列的文章,主要参考《Java Persistence with MyBatis 3》。
样例数据
本文以MySQL数据库为例,建立一个STUDENTS表,插入两条数据,然后进行单表的增删改查
CREATE TABLE STUDENTS
(
stud_id int(11) NOT NULL AUTO_INCREMENT,
- 【Hadoop十五】Hadoop Counter
bit1129
hadoop
1. 只有Map任务的Map Reduce Job
File System Counters
FILE: Number of bytes read=3629530
FILE: Number of bytes written=98312
FILE: Number of read operations=0
FILE: Number of lar
- 解决Tomcat数据连接池无法释放
ronin47
tomcat 连接池 优化
近段时间,公司的检测中心报表系统(SMC)的开发人员时不时找到我,说用户老是出现无法登录的情况。前些日子因为手头上 有Jboss集群的测试工作,发现用户不能登录时,都是在Tomcat中将这个项目Reload一下就好了,不过只是治标而已,因为大概几个小时之后又会 再次出现无法登录的情况。
今天上午,开发人员小毛又找到我,要我协助将这个问题根治一下,拖太久用户难保不投诉。
简单分析了一
- java-75-二叉树两结点的最低共同父结点
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import ljn.help.*;
public class BTreeLowestParentOfTwoNodes {
public static void main(String[] args) {
/*
* node data is stored in
- 行业垂直搜索引擎网页抓取项目
carlwu
LuceneNutchHeritrixSolr
公司有一个搜索引擎项目,希望各路高人有空来帮忙指导,谢谢!
这是详细需求:
(1) 通过提供的网站地址(大概100-200个网站),网页抓取程序能不断抓取网页和其它类型的文件(如Excel、PDF、Word、ppt及zip类型),并且程序能够根据事先提供的规则,过滤掉不相干的下载内容。
(2) 程序能够搜索这些抓取的内容,并能对这些抓取文件按照油田名进行分类,然后放到服务器不同的目录中。
- [通讯与服务]在总带宽资源没有大幅增加之前,不适宜大幅度降低资费
comsci
资源
降低通讯服务资费,就意味着有更多的用户进入,就意味着通讯服务提供商要接待和服务更多的用户,在总体运维成本没有由于技术升级而大幅下降的情况下,这种降低资费的行为将导致每个用户的平均带宽不断下降,而享受到的服务质量也在下降,这对用户和服务商都是不利的。。。。。。。。
&nbs
- Java时区转换及时间格式
Cwind
java
本文介绍Java API 中 Date, Calendar, TimeZone和DateFormat的使用,以及不同时区时间相互转化的方法和原理。
问题描述:
向处于不同时区的服务器发请求时需要考虑时区转换的问题。譬如,服务器位于东八区(北京时间,GMT+8:00),而身处东四区的用户想要查询当天的销售记录。则需把东四区的“今天”这个时间范围转换为服务器所在时区的时间范围。
- readonly,只读,不可用
dashuaifu
jsjspdisablereadOnlyreadOnly
readOnly 和 readonly 不同,在做js开发时一定要注意函数大小写和jsp黄线的警告!!!我就经历过这么一件事:
使用readOnly在某些浏览器或同一浏览器不同版本有的可以实现“只读”功能,有的就不行,而且函数readOnly有黄线警告!!!就这样被折磨了不短时间!!!(期间使用过disable函数,但是发现disable函数之后后台接收不到前台的的数据!!!)
- LABjs、RequireJS、SeaJS 介绍
dcj3sjt126com
jsWeb
LABjs 的核心是 LAB(Loading and Blocking):Loading 指异步并行加载,Blocking 是指同步等待执行。LABjs 通过优雅的语法(script 和 wait)实现了这两大特性,核心价值是性能优化。LABjs 是一个文件加载器。RequireJS 和 SeaJS 则是模块加载器,倡导的是一种模块化开发理念,核心价值是让 JavaScript 的模块化开发变得更
- [应用结构]入口脚本
dcj3sjt126com
PHPyii2
入口脚本
入口脚本是应用启动流程中的第一环,一个应用(不管是网页应用还是控制台应用)只有一个入口脚本。终端用户的请求通过入口脚本实例化应用并将将请求转发到应用。
Web 应用的入口脚本必须放在终端用户能够访问的目录下,通常命名为 index.php,也可以使用 Web 服务器能定位到的其他名称。
控制台应用的入口脚本一般在应用根目录下命名为 yii(后缀为.php),该文
- haoop shell命令
eksliang
hadoophadoop shell
cat
chgrp
chmod
chown
copyFromLocal
copyToLocal
cp
du
dus
expunge
get
getmerge
ls
lsr
mkdir
movefromLocal
mv
put
rm
rmr
setrep
stat
tail
test
text
- MultiStateView不同的状态下显示不同的界面
gundumw100
android
只要将指定的view放在该控件里面,可以该view在不同的状态下显示不同的界面,这对ListView很有用,比如加载界面,空白界面,错误界面。而且这些见面由你指定布局,非常灵活。
PS:ListView虽然可以设置一个EmptyView,但使用起来不方便,不灵活,有点累赘。
<com.kennyc.view.MultiStateView xmlns:android=&qu
- jQuery实现页面内锚点平滑跳转
ini
JavaScripthtmljqueryhtml5css
平时我们做导航滚动到内容都是通过锚点来做,刷的一下就直接跳到内容了,没有一丝的滚动效果,而且 url 链接最后会有“小尾巴”,就像#keleyi,今天我就介绍一款 jquery 做的滚动的特效,既可以设置滚动速度,又可以在 url 链接上没有“小尾巴”。
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/37.htmHTML文件代码:
&
- kafka offset迁移
kane_xie
kafka
在早前的kafka版本中(0.8.0),offset是被存储在zookeeper中的。
到当前版本(0.8.2)为止,kafka同时支持offset存储在zookeeper和offset manager(broker)中。
从官方的说明来看,未来offset的zookeeper存储将会被弃用。因此现有的基于kafka的项目如果今后计划保持更新的话,可以考虑在合适
- android > 搭建 cordova 环境
mft8899
android
1 , 安装 node.js
http://nodejs.org
node -v 查看版本
2, 安装 npm
可以先从 https://github.com/isaacs/npm/tags 下载 源码 解压到
- java封装的比较器,比较是否全相同,获取不同字段名字
qifeifei
非常实用的java比较器,贴上代码:
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;
import net.sf.json.JsonConfig;
i
- 记录一些函数用法
.Aky.
位运算PHP数据库函数IP
高手们照旧忽略。
想弄个全天朝IP段数据库,找了个今天最新更新的国内所有运营商IP段,copy到文件,用文件函数,字符串函数把玩下。分割出startIp和endIp这样格式写入.txt文件,直接用phpmyadmin导入.csv文件的形式导入。(生命在于折腾,也许你们觉得我傻X,直接下载人家弄好的导入不就可以,做自己的菜鸟,让别人去说吧)
当然用到了ip2long()函数把字符串转为整型数
- sublime text 3 rust
wudixiaotie
Sublime Text
1.sublime text 3 => install package => Rust
2.cd ~/.config/sublime-text-3/Packages
3.mkdir rust
4.git clone https://github.com/sp0/rust-style
5.cd rust-style
6.cargo build --release
7.ctrl