时间限制: 10 Sec 内存限制: 128 MB
提交: 97 解决: 31
[提交] [状态] [命题人:admin]
题目描述
There are two sequences a1,a2,...,an , b1,b2,...,bn . Let . There are m operations within three kinds as following:
• 1 x y: change value ax to y.
• 2 x y: change value bx to y.
• 3 k: ask min{t|k≤S(t)}
输入
The first line contains a integer T (1≤T≤5) representing the number of test cases.
For each test case, the first line contains two integers n (1≤n≤100000), m (1≤m≤10000).
The following line contains n integers representing the sequence a1,a2,...,an .
The following line contains n integers representing the sequence b1,b2,...,bn .
The following m lines, each line contains two or three integers representing an operation mentioned above.
It is guaranteed that, at any time, we have 1≤ai≤1000, 1≤bi,k≤109 . And the number of queries (type 3 operation) in each test case will not exceed 1000.
输出
For each query operation (type 3 operation), print the answer in one line.
复制样例数据
2 4 6 2 4 6 8 1 3 5 7 1 2 3 2 3 3 3 15 1 3 8 3 90 3 66 8 5 2 4 8 3 1 3 6 24 2 2 39 28 85 25 98 35 3 67 3 28 3 73 3 724 3 7775
样例输出
17 87 65 72 58 74 310 2875
设t=k1*ai+c1. b=k2*ai-c2. 由于a数组范围为只有1000,我们可以通过预处理求出在1000范围 所有的 ai和c2,对于每个t它的c1是固定的。
#include
using namespace std;
typedef long long LL;
const int N=100100;
int a[N],b[N],num[1010][1010],n; //num[x][y]表示对于所有a[i]==x时的b[i]%a[i]余数大于等于y的数目
bool check(LL x,LL s)
{
LL ret=0;
for(int i=1; i<=1000; i++)
{
ret+=x/i*num[i][0]; //num[i][0]为a数组中等于i的数的个数
ret-=num[i][x%i+1]; //减掉所有 c1>1;
if(check(mid,x))
r=mid;
else
l=mid+1;
}
return l;
}
int main()
{
int TA,T,x,y,z;
LL ret;
scanf("%d",&TA);
while(TA--)
{
scanf("%d%d",&n,&T);
ret=0;
for(int i=1; i<=1000; i++)
for(int j=0; j=0; j--)
num[i][j]+=num[i][j+1];
while(T--)
{
scanf("%d%d",&z,&x);
if(z==1)
{
scanf("%d",&y);
for(int i=b[x]%a[x]; i>=0; i--)
num[a[x]][i]--;
for(int i=b[x]%y; i>=0; i--)
num[y][i]++;
ret-=(b[x]/a[x]);
ret+=(b[x]/y);
a[x]=y;
}
else if(z==2)
{
scanf("%d",&y);
for(int i=b[x]%a[x]; i>=0; i--)
num[a[x]][i]--;
for(int i=y%a[x]; i>=0; i--)
num[a[x]][i]++;
ret-=(b[x]/a[x]);
ret+=(y/a[x]);
b[x]=y;
}
else
{
printf("%lld\n",solve(ret+x));
}
}
}
}