HDU-2588-GCD-数论-欧拉函数+思维
【Description】
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written
(a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little
more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
【Input】
The first line of input is an integer T(T<=100) representing the number of test cases.
The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N),
representing a test case.
【Output】
For each test case,output the answer on a single line.
【Examples】
Sample Input
3
1 1
10 2
10000 72
Sample Output
1
6
260
【Problem Description】
给你n,m。求gcd(x,n)>=m的x的个数。其中1<=x<=n
【Solution】
找到所有x>=m,且n%x==0.
那么答案就是所有满足条件的phi(n/x)的和。
原因:
令y=n/x;phi(n/x)=phi(y),就是小于y且与y互质的数的个数。
假设小于y,且与y互质的数为p1,p2,,,pk
因为对于x,gcd(x,n)==x>=m,所以gcd(x*pk,n)==x>=m.
【Code】
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
const int maxn=1e9+5;
int Phi(int n)
{
long long ans=n;
for(int i=2;i*i<=n;i++)
{
if(n%i==0)
{
ans-=ans/i;
while(n%i==0) n/=i;
}
}
if(n>1) ans-=ans/n;
return ans;
}
Int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int t; cin>>t;
while(t--)
{
int n,m,ans=0;
cin>>n>>m;
for(int i=1;i*i<=n;i++)
{
if(n%i==0)
{
if(i>=m) ans+=Phi(n/i);
if(n/i>=m&&n/i!=i) ans+=Phi(i);
}
}
cout<<ans<<endl;
}
cin.get(),cin.get();
return 0;
}