《拓扑:游走于直观和抽象之间》转自林达华

近日来,抽空再读了一遍点集拓扑(Point Set Topology),这是我第三次重新学习这个理论了。我看电视剧和小说,极少能有兴致看第二遍,但是,对于数学,每看一次都有新的启发和收获。

代数,分析,和拓扑,被称为是现代数学的三大柱石。最初读拓扑,是在两三年前,由于学习流形理论的需要。可是,随着知识的积累,发现它是很多理论的根基。可以说,没有拓扑,就没有现代意义的分析与几何。我们在各种数学分支中接触到的最基本的概念,比如,极限,连续,距离(度量),边界,路径,在现代数学中,都源于拓扑。

拓扑学是一门非常奇妙的学科,它把最直观的现象和最抽象的概念联系在一起了。拓扑描述的是普遍使用的概念(比如开集,闭集,连续),我们对这些概念习以为常,理所当然地使用着,可是,真要定义它,则需要对它们本质的最深刻的洞察。数学家们经过长时间的努力,得到了这些概念的现代定义。这里面很多第一眼看上去,会感觉惊奇——怎么会定义成这个样子。

首先是开集。在学习初等数学时,我们都学习开区间 (a, b)。可是,这只是在一条线上的,怎么推广到二维空间,或者更高维空间,或者别的形体上呢?最直观的想法,就是“一个不包含边界的集合”。可是,问题来了,给一个集合,何谓“边界”?在拓扑学里面,开集(Open Set)是最根本的概念,它是定义在集合运算的基础上的。它要求开集符合这样的条件:开集的任意并集和有限交集仍为开集。

我最初的时候,对于这样的定义方式,确实百思不解。不过,读下去,看了和做了很多证明后,发现,这样的定义一个很重要的意义在于:它保证了开集中每个点都有一个邻域包含在这个集合内——所有点都和外界(补集)保持距离。这样的理解应该比使用集合运算的定义有更明晰的几何意义。但是,直观的东西不容易直接形成严谨的定义,使用集合运算则更为严格。而集合运算定义中,任意并集的封闭性是对这个几何特点的内在保证。

另外一个例子就是“连续函数”(Continuous Function)。在学微积分时,一个耳熟能详的定义是“对任意的epsilon > 0,存在delta > 0,使得 。。。。”,背后最直观的意思就是“足够近的点保证映射到任意小的范围内”。可是,epsilon, delta都依赖于实空间,不在实空间的映射又怎么办呢?拓扑的定义是“如果一个映射的值域中任何开集的原像都是开集,那么它连续。”这里就没有epsilon什么事了。

这里的关键在于,在拓扑学中,开集的最重要意义就是要传递“邻域”的意思——开集本身就是所含点的邻域。这样连续定义成这样就顺理成章了。稍微把说法调节一下,上面的定义就变成了“对于f(x)的任意领域U,都有x的一个邻域V,使得V里面的点都映射到U中。”

这里面,我们可以感受到为什么开集在拓扑学中有根本性的意义。既然开集传达“邻域”的意思,那么,它最重要的作用就是要表达哪些点靠得比较近。给出一个拓扑结构,就是要指出哪些是开集,从而指出哪些点靠得比较近,这样就形成了一个聚集结构——这就是拓扑。

可是这也可以通过距离来描述,为什么要用开集呢,反而不直观了。某种意义上说,拓扑是“定性”的,距离度量是“定量”的。随着连续变形,距离会不断变化,但是靠近的点还是靠近,因此本身固有的拓扑特性不会改变。拓扑学研究的就是这种本质特性——连续变化中的不变性。

在拓扑的基本概念中,最令人费解的,莫过于“紧性”(Compactness)。它描述一个空间或者一个集合“紧不紧”。正式的定义是“如果一个集合的任意开覆盖都有有限子覆盖,那么它是紧的”。乍一看,实在有点莫名其妙。它究竟想描述一个什么东西呢?和“紧”这个形容词又怎么扯上关系呢?

一个直观一点的理解,几个集合是“紧”的,就是说,无限个点撒进去,不可能充分散开。无论邻域多么小,必然有一些邻域里面有无限个点。上面关于compactness的这个定义的玄机就在有限和无限的转换中。一个紧的集合,被无限多的小邻域覆盖着,但是,总能找到其中的有限个就能盖全。那么,后果是什么呢?无限个点撒进去,总有一个邻域包着无数个点。邻域们再怎么小都是这样——这就保证了无限序列中存在极限点。

Compact这个概念虽然有点不那么直观,可是在分析中有着无比重要的作用。因为它关系到极限的存在性——这是数学分析的基础。了解泛函分析的朋友都知道,序列是否收敛,很多时候就看它了。微积分中,一个重要的定理——有界数列必然包含收敛子列,就是根源于此。

在学习拓扑,或者其它现代数学理论之前,我们的数学一直都在有限维欧氏空间之中,那是一个完美的世界,具有一切良好的属性,Hausdorff, Locally compact, Simply connected,Completed,还有一套线性代数结构,还有良好定义的度量,范数,与内积。可是,随着研究的加深,终究还是要走出这个圈子。这个时候,本来理所当然的东西,变得不那么必然了。

  • 两个点必然能分开?你要证明空间是Hausdorff的。
  • 有界数列必然存在极限点?这只在locally compact的空间如此。
  • 一个连续体内任意两点必然有路径连接?这可未必。

一切看上去有悖常理,而又确实存在。从线性代数到一般的群,从有限维到无限维,从度量空间到拓扑空间,整个认识都需要重新清理。而且,这些绝非仅是数学家的概念游戏,因为我们的世界不是有限维向量能充分表达的。当我们研究一些不是向量能表达的东西的时候,度量,代数,以及分析的概念,都要重新建立,而起点就在拓扑。

你可能感兴趣的:(数学)