Consider a table G of size n × m such that G(i, j) = GCD(i, j) for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. GCD(a, b) is the greatest common divisor of numbers a and b.
You have a sequence of positive integer numbers a1, a2, ..., ak. We say that this sequence occurs in table G if it coincides with consecutive elements in some row, starting from some position. More formally, such numbers 1 ≤ i ≤ n and 1 ≤ j ≤ m - k + 1 should exist that G(i, j + l - 1) = al for all 1 ≤ l ≤ k.
Determine if the sequence a occurs in table G.
The first line contains three space-separated integers n, m and k (1 ≤ n, m ≤ 1012; 1 ≤ k ≤ 10000). The second line contains k space-separated integers a1, a2, ..., ak (1 ≤ ai ≤ 1012).
Print a single word "YES", if the given sequence occurs in table G, otherwise print "NO".
100 100 5 5 2 1 2 1
YES
100 8 5 5 2 1 2 1
NO
100 100 7 1 2 3 4 5 6 7
NO
Sample 1. The tenth row of table G starts from sequence {1, 2, 1, 2, 5, 2, 1, 2, 1, 10}. As you can see, elements from fifth to ninth coincide with sequence a.
Sample 2. This time the width of table G equals 8. Sequence a doesn't occur there.
题目大意:给出一个n*m的数表,(i,j)=GCD(i,j).然后给出一个序列a1...ak问序列是否在数表中出现过。
题解:扩展中国剩余定理
首先可以确定行一定是a1...ak的最小公倍数的倍数,如果lcm>n,那么无解。
然后设第一列为x
x=a1*b1 (其中b表示a1的整数倍,因为a1为x的gcd,所以一定能表示成a1*b1的形式)
x+1=a2*b2
x+2=a3*b3
.....
可以把式子都转换成线性同余方程的形式x=a[i]-i+1 (mod a[i])
用扩展中国剩余定理合并,然后求出解x
如果解出来的x为0,那么需要先加上r,再进行判断。
如果x>m-k+1,则无解。
然后再带入验证一下答案,就可以输出最终判断的结果了。
#include
#include
#include
#include
#include
#define N 10003
#define LL long long
using namespace std;
LL n,m,a[N],c[N],r[N];
int k;
LL mul(LL a,LL b,LL mod)
{
LL ans=0;
while (b) {
if (b&1) ans=(ans+a)%mod;
b>>=1;
a=(a+a)%mod;
}
return ans%mod;
}
LL gcd(LL x,LL y)
{
LL r;
while (y) {
r=x%y;
x=y; y=r;
}
return x;
}
void exgcd(LL a,LL b,LL &x,LL &y)
{
if (!b) {
x=1; y=0; return;
}
exgcd(b,a%b,x,y);
LL t=y;
y=x-(a/b)*y;
x=t;
}
LL inv(LL a,LL b){
LL x,y;
exgcd(a,b,x,y);
return (x%b+b)%b;
}
bool check(LL a1,LL a2,LL r1,LL r2,LL &aa,LL &rr)
{
LL c=a2-a1; LL d=gcd(r1,r2);
// cout<n) {
printf("NO\n");
return 0;
}
}
for (int i=1;i<=k;i++) r[i]=c[i],a[i]=c[i]-i+1;
LL a1,a2,r1,r2,rr,aa;
a1=aa=a[1]; r1=rr=r[1];
for (int i=2;i<=k;i++) {
a2=a[i]; r2=r[i];
if (a2<0) a2=(a2%r2+r2)%r2;
if(!check(a1,a2,r1,r2,aa,rr)) {
printf("NO\n");
return 0;
}
a1=aa; r1=rr;
//cout<m-k+1) {
printf("NO\n");
return 0;
}
for (int i=1;i<=k;i++) {
LL t=gcd(lcm,aa+i-1);
if (t!=c[i]) {
printf("NO\n");
return 0;
}
}
printf("YES\n");
}