We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (x i mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23
31
79
Sample Output
10
8
24
求模素数p的原根个数
结论:如果p是素数,则模p必有原根,其个数为 ϕ(p−1) ϕ ( p − 1 )
code:
#include
#include
#include
using namespace std;
const int maxn = 1e5+10;
int phi[maxn];
void Euler(){
for(int i = 1; i < maxn; i++){
phi[i] = i;
}
for(int i = 2; i < maxn; i++){
if(phi[i] == i){
for(int j = i; j < maxn; j += i){
phi[j] = phi[j] / i * (i - 1);
}
}
}
}
int main(){
Euler();
int p;
while(~scanf("%d",&p)){
printf("%d\n",phi[p-1]);
}
return 0;
}