Primitive Roots(原根个数)

Primitive Roots

We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (x i mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.

Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input

23
31
79

Sample Output

10
8
24

题意:

求模素数p的原根个数

分析:

结论:如果p是素数,则模p必有原根,其个数为 ϕ(p1) ϕ ( p − 1 )

code:

#include 
#include 
#include 
using namespace std;
const int maxn = 1e5+10;
int phi[maxn];
void Euler(){
    for(int i = 1; i < maxn; i++){
        phi[i] = i;
    }
    for(int i = 2; i < maxn; i++){
        if(phi[i] == i){
            for(int j = i; j < maxn; j += i){
                phi[j] = phi[j] / i * (i - 1);
            }
        }
    }
}
int main(){
    Euler();
    int p;
    while(~scanf("%d",&p)){
        printf("%d\n",phi[p-1]);
    }
    return 0;
}

你可能感兴趣的:(数论)