- MATLAB使用OMP实现图像的压缩感知实例
superdont
计算机视觉入门matlab计算机视觉图像处理机器学习图像加密人工智能算法
OMP(OrthogonalMatchingPursuit)是一种用于稀疏信号恢复的迭代算法。它的目标是从一组测量值中重建具有少量非零元素的信号。基本步骤以下是OMP算法的简要步骤:初始化残差:将残差初始化为测量向量。迭代过程:a.原子选择:在每次迭代中,从字典中选择与当前残差最相关的原子。b.更新估计:使用所选的原子更新信号的估计。c.更新残差:更新残差,将其减去已匹配的部分。停止条件:重复步骤
- 压缩感知中的稀疏基是什么?
superdont
计算机视觉入门计算机视觉人工智能pythonopencv算法
要压缩感知中,涉及到要将信号转换为稀疏形式。此时,需要用到的就是稀疏基。稀疏基可能是傅里叶基或者小波基。例如,如下参考文献提到:参考基傅里叶基和小波基是用于信号处理和图像处理中的常用数学工具,它们能够帮助我们在不同的基下表示信号,便于对信号的分析、压缩和重建。傅里叶基(FourierBasis):傅里叶基是一组复指数函数(对于连续信号)或者傅里叶级数(对于离散信号),可以用来表示周期性信号。对于任
- 压缩感知常用的测量矩阵
superdont
计算机视觉入门概率论机器学习python算法opencv人工智能计算机视觉
测量矩阵的基本概念在压缩感知(CompressedSensing,CS)理论中,测量矩阵(也称为采样矩阵)是实现信号压缩采样的关键工具。它是一个通常为非方阵的矩阵,用于将信号从高维空间映射到低维空间,生成观测向量。如果信号在某个基下是稀疏的,那么通过与测量矩阵相乘,可以得到它的压缩表示。测量矩阵的作用测量矩阵的主要作用是从原始高维信号中提取出足够的信息,以便于后续能够从这些较少的信息中准确恢复原信
- 压缩感知或压缩传感
zhoutongchi
特征提取
由来采样定理(又称取样定理、抽样定理)是采样带限信号过程所遵循的规律,1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等,即:采样率不小于最高频率的两倍(该采样率称作Nyquist采样率)。该理论指
- 压缩感知(Compressive Sensing)学习
xiaoxixi1918
图像处理
压缩感知(CompressiveSensing)学习之(一)
[email protected]://blog.csdn.net/zouxy09压缩感知(压缩传感,CompressiveSensing)理论是近年来信号处理领域诞生的一种新的信号处理理论,由D.Donoho(美国科学院院士)、E.Candes(Ridgelet,Curvelet创始人)及华裔科学家T.Tao(2006年菲尔兹奖获得者
- 压缩感知简单介绍
爱学习的一一一
压缩感知网络算法
文章目录前言一、压缩感知是什么?二、压缩感知介绍1、压缩感知的流程2、信号稀疏化表示3、观测矩阵设计4、信号重构总结前言刚接触压缩感知时,面对其概念十分模糊,但是又十分欣赏其作用。在不懈的学习下,算是对压缩感知有了一定的了解啦,在这里将基础知识分享出来,帮助大家一切学习压缩感知~一、压缩感知是什么? 压缩感知(CompressedSensing,CS)是由陶哲轩等人提出的一种用于信息获取的突破性
- 压缩感知
weixin_34185320
人工智能python
2019独角兽企业重金招聘Python工程师标准>>>首先,我们必须要认识到这一点,即CS(CompressedSensing)中的Compressed不同于传统信息论和率失真意义上的compression。在CS中,"Compressed"一词更加准确的描述是一个降维采样的过程,而不是在信源编码意义上的“compression”。在CS中,我们是没有关于原始信号像素域的任何信息,仅仅只有观测域信
- 压缩感知学习资源
zhyoulun
压缩感知压缩感知资源文献编程源码
编程实现:(简单入门)压缩感知正交匹配追踪算法重构二维图像(专业程序)l1-magic(OMP算法的Matlab实现)通过正交匹配追踪算法从随机测量值中恢复信号文献:(列举很详细)中国压缩传感资源(ChinaCompressiveSensingResources)(简单的Review)CompressiveSensing(SP算法)Subspacepursuitforcompressivesens
- 关于一些图像的期刊与会议和小波压缩感知CS
SRT字符不够
图像基础知识图像处理
图像的分辨率主要指的是空间分辨率,即图像的像素密度以及单位面积的像素尺度,它描述了一幅图像中所包含细节的多少。分辨率越高,图像的细节越丰富,包含的信息含量就越多。图像的空间分辨率首先受图像传感器和成像设备的制约,现有的CCD(Charge-coupledDevice,电荷耦合元件)或CMOS(ComplementaryMetalOxideSemiconductor,互补金属氧化物半导体)传感器单元
- 压缩感知——革新数据采集的科学魔法
superdont
计算机视觉人工智能算法计算机视觉opencv系统地学习Pythonpython机器学习
引言:在数字时代,数据以及数据的收集和处理无处不在。压缩感知(CompressedSensing,CS)是一种新兴的数学框架,它挑战了我们传统上对数据采集和压缩的看法,给医学图像、天文观测、环境监测等领域带来了颠覆性的影响。但到底什么是压缩感知,它又为何如此重要呢?本文将为你深入浅出地解释。压缩感知压缩感知(CS)与传统数据压缩的差异:传统信息论告诉我们,数据被采集后通常需要进行压缩以便于存储和传
- 【压缩感知基础】Nyquist采样定理
superdont
计算机视觉计算机视觉opencv人工智能python矩阵
Nyquist定理,也被称作Nyquist采样定理,是由哈里·奈奎斯特在1928年提出的,它是信号处理领域的一个重要基础定理。它描述了连续信号被离散化为数字信号时,采样的要求以避免失真。数学表示Nyquist定理的核心内容可以描述如下:若要对一个带宽受限的连续信号进行采样而不引起失真,采样频率(频率的单位为Hz,指每秒采样数)必须大于信号最高频率的两倍。这个定理的数学表述为:[f_s>2f_{ma
- 压缩感知进阶 有关稀疏矩阵
还可以吧有点纯纯的
分享一下我老师大神的人工智能教程!零基础,通俗易懂!http://blog.csdn.net/jiangjunshow也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!上一篇《初识压缩感知CompressiveSensing》中我们已经讲过了压缩感知的作用和基本想法,涉及的领域,本文通过学习陶哲轩对compressivesensing(CS)的课程,对压缩感知做进一步理解,针对
- 压缩感知模型总结
安之少年
高光谱图像采样方式压缩感知信息压缩图像识别
压缩感知采样方式以及模型总结——学习笔记Paper1:RankMinimizationforSnapshotCompressiveImaging研究现状采样方式WNNM与SCI模型非局部相似利用WNNM低秩约束构造模型Paper2:Tensornon-locallow-rankregularizationforrecoveringcompressedhyperspectralimages,2017
- 压缩感知(Compressed Sensing,CS)的基础知识
superdont
计算机视觉计算机视觉人工智能算法opencv矩阵python图像处理
压缩感知(CompressedSensing,CS)是一种用于信号处理的技术,旨在以少于奈奎斯特采样定理所要求的样本频率来重构信号。该技术利用信号的稀疏性,即信号可以用较少的非零系数表示。压缩感知在图像获取中的应用使得在采集过程中就以较少的样本来捕获图像,然后通过算法完整重构出原始图像。压缩感知和传统的图像异同点压缩感知和传统的图像获取相比,在获取图像和原始图像方面具有以下异同点:相同点重构目标:
- 【信道估计】基于压缩感知双向中继信道估计附Matlab代码
前程算法matlab屋
信号处理matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍摘要在本文中,我们提出了一种基于压缩感知(CS)的双向中继信道估计方法。该方法利用CS理论中的稀疏表示
- 数学建模之数据预处理-------数据异常值的处理
阑梦清川
数学建模数学建模
1.数据集成:把不同类型的数据转换成统一的类型;,即格式的统一化;2.数据规约:包括数据降维,降数据,数据压缩当不同数据相关性很大时,我们采用降维的方法;当数据的相关性很小时,我们采用降数据的方法数据降维的主成分分析即PCA,如上图所显示的那样,即旋转坐标轴,x轴上的数据波动范围比较大,而y轴上数据的波动范围比较小,我们便把二维降成一维。降数据主要采用分层抽样,简单随机抽样;数据压缩包括压缩感知,
- 重建传播网络并识别隐藏来源
ones~
传染病论文集网络
1.摘要我们从数据中揭示复杂网络结构和动态的能力,对于理解和控制复杂系统中的集体动态至关重要。尽管在这一领域已有近期进展,但如何从有限的时间序列中重建具有随机动态过程的网络仍然是一个突出问题。在这里,我们开发了一个基于压缩感知的框架,用于重构发生随机传播动态的复杂网络。我们将这种方法应用于大量的模型和真实网络,发现可以从少量极化(二进制)数据中实现非均匀相互作用的完全重建,这是压缩感知的优点。此外
- 论文解读--Compressed Sensing for MIMO Radar - Algorithms and Performance
奔袭的算法工程师
论文解读雷达信号处理人工智能算法深度学习目标检测机器学习
MIMO雷达压缩感知-算法和性能摘要压缩感知技术使得利用雷达场景的稀疏性来潜在地提高系统性能成为可能。本文将压缩感知工具应用于MIMO雷达,在方位-距离-多普勒域重构场景。推导了雷达波形和发射、接收阵列的条件,使雷达传感矩阵具有小相干性和稀疏恢复成为可能。提出了理论性能界限,并通过数值模拟进行了验证。1介绍雷达领域两个相对较新的发展是MIMO(多输入多输出)雷达的发展[9],以及压缩感知在雷达信号
- 深度学习与神经网络-压缩感知(Compressive Sensing)学习(五)
浮生梦浮生
深度学习与神经网络机器学习人工智能压缩感知高斯矩阵稀疏性相关性
压缩感知(压缩传感,CompressiveSensing)理论是近年来信号处理领域诞生的一种新的信号处理理论,由D.Donoho(美国科学院院士)、E.Candes(Ridgelet,Curvelet创始人)及华裔科学家T.Tao(2006年菲尔兹奖获得者)等人提出,自诞生之日起便极大地吸引了相关研究人员的关注。网站http://dsp.rice.edu/cs上可以获取大量相关的论文。有关压缩感知
- BART non-Cartesian 重建:并行成像 压缩感知
张哥coder
MRI磁共振重建matlab磁共振成像医学图像
本文主要使用并行成像和压缩感知方法实现non-CartesianMRI数据的重建。目录1自定义MRIkspacetrajectory2自定义该trajectory下的多通道MRI数据3使用NUFFT直接做欠采样数据的重建
- 压缩感知基本理论
飞大圣
通信感知一体化算法
压缩感知的基本思想是利用信号的稀疏性来降低采样数据量。具体来说,压缩感知假设信号可以表示为一个稀疏系数向量和一个原子字典的线性组合,其中原子字典是一组基函数或样本点,可以表示信号的各个部分。因此,压缩感知算法的任务是利用尽可能少的采样数据,同时从中提取出信号的稀疏系数向量,然后利用稀疏系数向量和原子字典进行信号重构。奈奎斯特采样定理:若要不失真的恢复模拟信号,采样频率不应小于模拟信号频谱中最高频率
- 压缩感知学习
摸鱼带师小弟
学习
对稀疏和稀疏矩阵的认识采样率80Mhz采样间隔12.5ns,样本数量为800个一帧时长800*12.5ns=10us频域间隔1/10us=0.1Mhz第一个点的频率是0第21个点的频率是2Mhz 在只考虑正半轴,也即400个点的情况下,分别让不同的频点取1,然后对其进行ifft变换,(信号在频域是稀疏的)最终可以得到稀疏矩阵,下图的左边为实部的时域稀疏矩阵,右边为虚部的时域稀疏矩阵%%clc;cl
- 基于压缩感知的磁共振成像重建算法研究
电气_空空
毕业设计matlab仿真算法人工智能毕业设计matlab
摘要压缩感知的磁共振成像重建算法主要应用在医学临床行业,临床诊断都会运用到压缩感知的磁共振成像重建算法系统或仪器。更高效率和更高精度的压缩感知的磁共振成像重建算法一直是研究的热点。在医院的临床医学中,压缩感知的磁共振成像重建算法随处可见,因为其相比其他的控制方式而言,运行稳定且控制精度较高等优势,最重要的是压缩感知的磁共振成像重建算法在成像质量等方面具有很好的优势。随着自动控制技术和微电子技术的不
- L1-L2范数最小化问题-迭代收缩算法
weixin_30408165
matlabpython人工智能
L1-L2范数最小化问题-迭代收缩算法涉及L1-L2范数的机器学习问题非常常见,例如我们遇到的去噪、稀疏表示和压缩感知。一般而言,这类问题可以表示为:\[\min_{\bf{z}}||{\bf{z}}||_0\\\text{subjectto:}~\frac{1}{2}||{\bf{x}}-{\bf{A}}{\bf{z}}||_2^2\leq\epsilon\]由于\(L_0\)范数存在着NP难的
- 【笔记】压缩感知(1)
flyersong_bupt
lab滤噪算法
1、字典概念http://blog.csdn.net/jbb0523/article/details/45099655这个博客把冗余字典与完备字典讲的很好。完备字典是线性无关的,冗余字典是线性相关的(但也是有完整的基的)。故而使用完备字典的表示是唯一的,使用冗余字典的表示不是唯一的。这个博客还讲了使用冗余字典进行匹配追踪(MP)中,字典原子不是相互正交的向量。因此上面减去投影计算残差的过程中会再次
- 关于压缩感知(CS)技术的个人实践
tsinghua_clannad
信号与系统
关于压缩感知(CS)技术的个人实践文章目录关于压缩感知(CS)技术的个人实践概论与理论原理信号的压缩原理信号的重构原理MATLAB解决一维信号的压缩重构MATLAB解决二维图像的压缩重构概论与理论原理压缩感知技术,英文名为CompressiveSensing,简称CS理论。该理论指出当信号满足稀疏性或可压缩条件时,可以在远低于Nyquist速率的情况下采样信号,通过求解非线性最优化问题实现对信号的
- 43基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解,首先构造信号,并进行离散余弦变换,保证稀疏度,采用多个方法进行稀疏重构
顶呱呱程序
matlab工程应用matlab重构算法
基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解,首先构造信号,并进行离散余弦变换,保证稀疏度,采用多个方法进行稀疏重构,分别有,(1)基于L1正则的最小二乘算法-L1_Ls,(2)软阈值迭代算法(ISTA),(3)快速的迭代阈值收缩算法(FISTA),(4)平滑L0范数的重建算法(SL0算法),(5)正交匹配追踪算法(OMP),(6)压缩感知重构算法之压缩采样匹配追踪
- 压缩感知重构算法之基追踪(Basis Pursuit, BP)
Anstrue
语音信号处理与matlab编程
原文地址:http://blog.csdn.net/jbb0523/article/details/51986554#comments在此对作者表示深深的谢意!!除匹配追踪类贪婪迭代算法之外,压缩感知重构算法另一大类就是凸优化算法或最优化逼近方法,这类方法通过将非凸问题转化为凸问题求解找到信号的逼近,其中最常用的方法就是基追踪(BasisPursuit,BP),该方法提出使用l1范数替代l0范数来
- 压缩感知重构算法之基追踪(Basis Pursuit, BP).基追踪并不能称为一个具体的算法,而是一种最优化准则,可以有很多实现方式,我认为指的是L0可以变为L1的准则
I_AM_V_MAN
CSforConvexRelaxation
基追踪(basispursuit)算法是一种用来求解未知参量L1范数最小化的等式约束问题的算法。基追踪是通常在信号处理中使用的一种对已知系数稀疏化的手段。将优化问题中的L0范数转化为L1范数的求解就是基追踪的基本思想。比如我原先有一个优化问题:min||x||_0(就是L0范数的最小值)subjecttoy=Ax。这个||x||_0,就是表示x中有多少个非零元素;那么我们要求min||x||_0,
- 43基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解。
顶呱呱程序
matlab工程应用重构压缩重构感知稀疏优化软阈值迭代算法正交匹配追踪算法matlab
基于matlab针对压缩重构感知中的稀疏优化问题,实现L1范数最小化问题求解,首先构造信号,并进行离散余弦变换,保证稀疏度,采用多个方法进行稀疏重构,分别有,(1)基于L1正则的最小二乘算法-L1_Ls,(2)软阈值迭代算法(ISTA),(3)快速的迭代阈值收缩算法(FISTA),(4)平滑L0范数的重建算法(SL0算法),(5)正交匹配追踪算法(OMP),(6)压缩感知重构算法之压缩采样匹配追踪
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比