题目:http://www.lightoj.com/volume_showproblem.php?problem=1262
题意:有n * m的矩阵,给出所有的斜对角线之和,且所有元素在[1, 100]之间,复原这个矩阵
思路:看得zjbztianya聚聚的代码,,,好菜啊。。。
#include
#include
#include
#include
#include
#define debug() puts("here");
using namespace std;
const int N = 210;
const int INF = 0x3f3f3f3f;
struct edge
{
int to, cap, id, next;
} g[N*N*2];
int cnt, nv, head[N], level[N], gap[N], cur[N], pre[N];
int ans[N*N];
int cas;
void add_edge(int v, int u, int cap)
{
g[cnt].to = u, g[cnt].cap = cap, g[cnt].next = head[v], head[v] = cnt++;
g[cnt].to = v, g[cnt].cap = 0, g[cnt].next = head[u], head[u] = cnt++;
}
int sap(int s, int t)
{
memset(level, 0, sizeof level);
memset(gap, 0, sizeof gap);
memcpy(cur, head, sizeof head);
gap[0] = nv;
int v = pre[s] = s, flow = 0, aug = INF;
while(level[s] < nv)
{
bool flag = false;
for(int &i = cur[v]; i != -1; i = g[i].next)
{
int u = g[i].to;
if(g[i].cap > 0 && level[v] == level[u] + 1)
{
flag = true;
pre[u] = v;
v = u;
aug = min(aug, g[i].cap);
if(v == t)
{
flow += aug;
while(v != s)
{
v = pre[v];
g[cur[v]].cap -= aug;
g[cur[v]^1].cap += aug;
}
aug = INF;
}
break;
}
}
if(flag) continue;
int minlevel = nv;
for(int i = head[v]; i != -1; i = g[i].next)
{
int u = g[i].to;
if(g[i].cap > 0 && minlevel > level[u])
minlevel = level[u], cur[v] = i;
}
if(--gap[level[v]] == 0) break;
level[v] = minlevel + 1;
gap[level[v]]++;
v = pre[v];
}
return flow;
}
int main()
{
int t, n, m, a;
scanf("%d", &t);
while(t--)
{
cnt = 0;
memset(head, -1, sizeof head);
scanf("%d%d", &n, &m);
int ss = 0, tt = 2 * (n+m-1) + 1;
for(int i = 1; i <= n + m - 1; i++)
{
scanf("%d", &a);
a -= min(n, i) - max(0, i-m);
add_edge(ss, i, a);
}
for(int i = 1; i <= n + m - 1; i++)
{
scanf("%d", &a);
a -= min(n, i) - max(0, i-m);
add_edge(i + n+m-1, tt, a);
}
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
add_edge(i+j-1, m+i-j + n+m-1, 99), ans[(i-1)*m+j] = cnt - 1;
nv = tt + 1;
sap(ss, tt);
printf("Case %d:\n", ++cas);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
printf("%d%c", g[ans[(i-1)*m+j]].cap + 1, j == m ? '\n' : ' ');
}
return 0;
}