朴素贝叶斯基本思想特点一般过程示例1基本思想朴素贝叶斯的基本思想就是选择高概率对应的类别,即如果有两类,若p1(x,y)>p2(x,y),则分类类别为1若p1(x,y)
机器学习实战学习笔记(十)使用Apriori算法进行关联分析
Hold_My_Own
机器学习Apriori机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下) 从大规模数据集中寻找物品间的隐含关系被称作关联分析(associationanalysis)或者关联规则学习(associationrulelearning)。1关联分析Apriori算法优点:易编码实现。缺点:在大数据集上可能较慢。使用数据类型:数值型或者标称型数据。 关联分析是一种在大规模数据集中寻找有趣关系的任务。这
机器学习实战学习笔记(九)K-均值聚类算法
Hold_My_Own
机器学习K-Means聚类机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下) 聚类是一种无监督的学习,它将相似的对象归到同一个簇中。它有点像全自动分类,聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好。K-均值(K-means)聚类算法,之所以称之为K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。 簇识别(clusteridentification)
Peter 机器学习实战学习笔记(1)
Liker79
机器学习学习矩阵
shape的简单理解一、shape可以获取数组或矩阵的大小信息(矩阵的行数,列数,数组每一维的元素个数)在矩阵中shape[0]可以获取行数,shape[1]可以获取列数二、numpy中的tilenp.tile()本着函数取名必有所依的原理,博主百度了一下tile的英文意思,发现tile有平铺的意思。1.沿X轴复制在numpy中,np.tile(a,(2))函数的作用就是将函数将函数沿着X轴扩大两
机器学习实战学习笔记(七)预测数值型数据:回归
Hold_My_Own
机器学习回归预测数值型数据机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1用线性回归找到最佳拟合直线线性回归优点:结果易于理解,计算上不复杂。缺点:对非线性的数据拟合不好。适用数据类型:数值型和标称型数据。 假定输入数据存放在矩阵XXX中,而回归系数存放在向量www中。那么对于给定的数据X1X_1X1,预测结果将会通过Y1=X1TwY_1=X_1^TwY1=X1Tw给出。我们常用的方法极速找出使误
机器学习实战学习笔记11——FP-growth 算法
飞鸟2010
python学习笔记python机器学习FP-growth
1.FP-growth算法概述1.1FP-growth算法介绍FP-Growth算法是韩家炜等人在2000年提出的关联分析算法,它采取分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息。1.2FP-growth算法原理FP-growth算法使用了一种称为频繁模式树(FrequentPatternTree)的数据结构。FP-tree是一种特殊的前缀树,由频繁
机器学习实战学习笔记(五)支持向量机
Hold_My_Own
机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1基于最大间隔分隔数据支持向量机(SupportVectorMachines,SVM)优点:泛化错误率低,计算开销不大,结果易于解释。缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。使用数据类型:数值型和标称型数据。 假设给定一个特征空间上的训练数据集T={(x1,y1),(x2,y2),...,(
机器学习实战学习笔记4——奇异值分解(SVD)
飞鸟2010
python学习笔记机器学习
1.SVD算法概述1.1SVD算法介绍奇异值分解(SingularValueDecomposition)算法,可以将数据映射到低维空间,常用于从有噪声数据中抽取相关特征。1.2SVD算法原理(1)先利用SVD从数据中构建一个主题空间;(2)然后在该空间下计算相似度;1.3SVD算法优缺点(1)优点:简化数据,去除噪声,提高算法的结果(2)缺点:数据的转换可能难以理解(3)应用:最优化问题、特征值问
【机器学习实战学习笔记(1-2)】k-近邻算法应用实例python代码
进击的AI小白
机器学习
文章目录1.改进约会网站匹配效果1.1准备数据:从文本文件中解析数据1.2分析数据:使用Matplotlib创建散点图1.3准备数据:归一化特征1.4测试算法:作为完整程序验证分类器1.5使用算法:构建完成可用系统2.手写识别系统2.1准备数据:将图像转换为测试向量2.2测试算法:使用k-近邻算法识别手写数字在上一篇文章中我们得到了基于欧式距离、多数表决规则,实现方法采用线性搜索法的k-近邻法cl
机器学习实战学习笔记(十三)利用SVD简化数据
Hold_My_Own
机器学习svd机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1SVD的应用奇异值分解优点:简化数据,去除噪声,提高算法的结果。缺点:数据的转换可能难以理解。适用数据类型:数值型数据。1.1隐形语义索引 最早的SVD应用之一就是信息检索。我们称利用SVD的方法为隐性语义索引(LatentSemanticIndex,LSI)或隐性语义分析(LatentSemanticAnalysis,LS
机器学习实战学习笔记(十二)利用PCA来简化数据
Hold_My_Own
机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1降维技术 对数据进行简化的原因:使得数据集更易使用;降低很多算法的计算开销;去除噪声;使得结果易懂。 主成分分析(PrincipalComponentAnalysis,PCA):在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴
机器学习实战学习笔记(十一)使用FP-growth算法来高效发现频繁项集
Hold_My_Own
机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下) FP-growth算法:比Apriori算法要快。它基于Apriori构建,但是在完成相同任务时采用了一些不同的技术。这里的任务是将数据集存储在一个特定的称作FP树的结构之后发现频繁项集或者频繁相对,即常在一块出现的元素项的集合FP树。这个算法能够更有效地挖掘数据。这种算法虽然能更为高效地发现频繁项集,但不能用于发现关联规则
机器学习实战学习笔记(一)
sakurakdx
1.KNN算法描述简单来说:k-近邻算法(knn)采用测量不同特征值之间的距离算法进行分类优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂度高、空间复杂度高适用数据范围:数值型和标称型工作原理:存在一个训练样本集,样本集中每个数据都存在标签。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似(最近邻)的分类标签。一般来说,只选择样本
机器学习实战学习笔记 ---- K-Means(K-均值)聚类算法
杨鑫newlfe
MachineLearning
聚类是一种无监督的学习,它将相似的对象归到一个簇中,将不相似的对象归到不同的簇中。相似这一概念取决于所选择的相似度计算方式。K-Means是发现给定数据集的K个簇的聚类算法,之所以称之为“K-均”值是因为它可以发现K个不同的簇,且每个簇的中心采用的所含值的均值计算而成。簇个数K是用户指定的,每一个簇通过其质心(centroid),即簇中所有点的中心来描述。聚类与分类算法的最大区别在于,分类的目标类
【机器学习实战学习笔记(2-2)】决策树python3.6实现及简单应用
siplifyit
文章目录1.ID3及C4.5算法基础1.1计算香农熵1.2按照给定特征划分数据集1.3选择最优特征1.4多数表决实现2.基于ID3、C4.5生成算法创建决策树3.使用决策树进行分类4.存储决策树通过决策树原理及相关概念细节我们知道,决策树的学习算法主要包括3个步骤:特征选择、决策树生成算法、决策树剪枝,我们按照这个思路来一一实现相关功能。本文的实现目前主要涉及特征选择、ID3及C4.5算法。剪枝及
【机器学习实战学习笔记(2-1)】决策树原理及相关概念细节
siplifyit
文章目录1.决策树概述1.1基本概念1.2决策树学习概述2.特征选择2.1信息增益(informationgain)2.1.1熵(entropy)2.1.2条件熵(conditionalentropy)2.1.3信息增益计算2.2信息增益比(informationgainration)3.决策树的生成3.1ID3算法3.2C4.5算法4.决策树的剪枝1.决策树概述决策树(decisiontree)
机器学习实战学习笔记
suuunnnyoy
学习笔记
目录统计学习基本概念统计学习三要素1模型2策略(评价准则)损失函数和风险函数经验风险最小化和结构风险最小化一、分类1.K近邻1.1算法概述1.2算法一般流程:1.3算法要素1.3.1距离度量1.3.2k值的选择1.3.3分类决策规则1.4k近邻法的实现:kd树1.4.1构造kd树1.4.2搜索kd树1.5额外的2.决策树2.1算法概述2.2算法流程2.3特征选择2.3.1信息增益2.3.2信息增益
机器学习实战学习笔记一
SilenceHell
机器学习实战学习笔记
一.误差讲的很不错,我最初学机器学习就是看吴恩达的课程,当初他就讲了平方项误差是由高斯分布通过极大似然求得的,当时还不是特别理解,之后很多的教材也没有对这方面进行解释,没想到这里给推导了一遍,很不错。这张幻灯片有一个问题,XθX\thetaXθ都是列变量是不能相乘的,这里应该有一个转置。注意:能用这个方式直接求出结果的条件很苛刻那就是XTXX^TXXTX必须是非奇异矩阵,大部分实际条件下,这个条件
机器学习实战学习笔记(二)
三年二班周杰伦
机器学习
决策树。后面的CART会涉及到剪枝和回归。那个才是重点。这里就简单贴一下代码。frommathimportlog
importoperator
defcreateDataset():
dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
labels=['nosurfacing','flippers']
return
机器学习实战学习笔记(一)
三年二班周杰伦
机器学习
shape的用法numpy.tile()函数numpy.sum()的用法KNN算法和kmeans算法的异同numpy.argsort()字典的get方法python中iteritems()函数一开始看问题还是蛮多的,看python的基础语法看完就忘了,只有到真正需要用的时候才会了解到相应的用法。下面是带注释的代码。fromnumpyimport*
importoperator
fromosimpo
机器学习实战学习笔记
infinitezechan
机器学习实战
Chapter1机器学习基础NumPy函数库基础random.rand(4,4)上述命令构造了4*4的随机数组>>>random.rand(4,4)
array([[0.0418002,0.20941796,0.68781548,0.32148814],[0.39318817,0.46766914,0.49318351,0.65444726],[0.33036255,0.70759215,0.59
机器学习实战学习笔记(三):朴素贝叶斯
test103
机器学习
贝叶斯原理之所以称之为“朴素”,是因为整个形式化过程只做最原始、最简单的假设。优缺点-优点:在数据较少的情况下仍然有效,可以处理多类别问题。-确定:对于输入数据的准备方式比较敏感。-适用数据类型:标称型数据。入门示例二维坐标中,如果p1(x,y)>p2(x,y),那么(x,y)属于类别1,否则属于类别2.共有7块石头,3块灰色的,4块黑色的p(gray)=3/7p(black)=4/7现在将7块石
机器学习实战学习笔记(四):Logistic回归
test103
机器学习
逻辑回归逻辑回归分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。优缺点优点:计算代价不高,易于理解和实现。确定:容易欠拟合,分类精度可能不高。适用数据类型:数值型和标称型数据。核心概念sigma函数最大释然估计应用——从疝气病预测病马的死亡率这章不详细描述,请参考书中描述及这篇博客,写的很好(http://sbp810050504.blog.51cto.com/2799422
机器学习实战学习笔记(二):决策树
test103
机器学习
决策树优缺点优点:计算复杂度不高,输出结果易于理解,对中间值的确实不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。原理树结构信息增益在划分数据集之前之后信息发生的变化称为信息增益。香农商集合信息的度量方式称为香农熵或者简称为熵,这个名字来源于信息论之父克劳德.香农。例子略实际中的应用——预测隐形眼镜类型隐形眼镜数据集是非常著名的数据集。构造树结构。
机器学习实战学习笔记9——Logistic回归
飞鸟2010
python学习笔记机器学习
1.logistic回归概述1.1logistic回归介绍Logistic回归是一种广义的线性回归分析模型,是研究二分类观察结果y与一些影响因素(x_1,x_2,…,x_n)之间关系的一种多变量分析方法。通常研究某些因素条件下某个结果是否发生,比如医学中根据症状来判断病人是否患有某种疾病。1.2Logistic回归原理Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式。
机器学习实战学习笔记8——朴素贝叶斯
飞鸟2010
python学习笔记机器学习
1.朴素贝叶斯概述1.1朴素贝叶斯介绍朴素贝叶斯(NaïveBayesian)是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯分类器基于一个简单的假设:给定目标值之间属性相互独立。1.2朴素贝叶斯工作原理假设有一个数据集,由两类组成,对于每个样本的分类,都是已知的。现在有一个新的点new_point(x,y),其分类未知。我们可以用p1(x,y)来表示数据点(x,y)属于类别1的概率;用p
机器学习实战学习笔记7——Kmeans
飞鸟2010
python学习笔记机器学习
1.Kmeans算法概述1.1Kmeans算法介绍Kmeans是发现给定数据集的K个簇的算法。簇个数K是用户给定的,每一个簇通过其质心,即簇中所有点的中心来描述。1.2Kmeans算法工作流程(1)创建K个质点作为起始质心;(2)当任意一个点的簇分配结果发生改变时:对数据集中的每个数据点对每个质心计算质心与数据点之间的距离将数据点分配到距其最近的簇对每一个簇,计算簇中所有点的均值并将均值作为质心1
机器学习实战学习笔记6——AdaBoost
飞鸟2010
python学习笔记机器学习
1.AdaBoost概述1.1AdaBoost介绍AdaBoost是一种迭代算法,其核心思想是针对同一训练集训练不同的分类器(弱分类器),然后把这些分类器集合起来,构成一个最终的强分类器。1.2AdaBoost优缺点(1)优点:泛化错误率低,易编码,可以应用在大部分分类器上,无需参数调整。(2)缺点:对离群点敏感。
机器学习实战学习笔记3——支持向量机
飞鸟2010
1.SVM算法概述1.1SVM简介支持向量机(SupportVectorMachine),是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。本身是一种监督式学习的方法,广泛应用于统计分类以及回归分析中。1.2SVM工作原理它使用非线性映射,将原训练数据
基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
[JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc