- Python OpenCV图像处理:从基础到高级的全方位指南
极客代码
玩转Python开发语言pythonopencv图像处理计算机视觉
目录第一部分:PythonOpenCV图像处理基础1.1OpenCV简介1.2PythonOpenCV安装1.3实战案例:图像显示与保存1.4注意事项第二部分:PythonOpenCV图像处理高级技巧2.1图像变换2.2图像增强2.3图像复原第三部分:PythonOpenCV图像处理实战项目3.1图像滤波3.2图像分割3.3图像特征提取第四部分:PythonOpenCV图像处理注意事项与优化策略4
- 读论文:DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
木水_
深度学习文献阅读人工智能DiffBIRDiffusionControlNet
DiffBIR发表于2023年的ICCV,是一种基于生成扩散先验的盲图像恢复模型。它通过两个阶段的处理来去除图像的退化,并细化图像的细节。DiffBIR的优势在于提供高质量的图像恢复结果,并且具有灵活的参数设置,可以在保真度和质量之间进行权衡。网络结构图如下所示:优化的痛点问题:平衡扩散模型内在具有的真实感先验以及图像复原任务所需要的保真度要求。twostage的网络总体架构stageone:去除
- 数字图像处理 阮秋琦 期末复习 #1 绪论及正交变换
11egativ1ty
数字图像处理学计算机视觉人工智能
考试范围:第三章图像处理中的正交变换第四章图像增强第五章图像编码第六章图像复原第八章图像分析绪论图像是一种数据结构,笼统来说是一个二维矩阵,每一个点的信息共同组成了视觉平面数字图像处理的方法根据上文,数字图像处理的第一种方案是空域法,因为它们是在图像的空间域(spatialdomain)中操作的。空域是指图像的像素空间,也就是图像中每个像素的位置和像素值的空间布局。因此,空域法是直接在图像的原始表
- 图像复原的天花板在哪里?SUPIR:开创性结合文本引导先验和模型规模扩大
AI生成未来
AIGC人工智能深度学习计算机视觉图像复原
SUPIR(Scaling-UPImageRestoration),这是一种开创性的图像复原方法,利用生成先验和模型扩大规模的力量。通过利用多模态技术和先进的生成先验,SUPIR在智能和逼真的图像复原方面取得了重大进展。作为SUPIR中的关键催化剂,模型的扩大规模显著增强了其能力,并展示了图像复原的新潜力。我们收集了包含2000万高分辨率、高质量图像的数据集用于模型训练,每个图像都附带有描述性文本
- Matlab数字图像处理——图像复原与滤波算法应用方法
MatpyMaster
matlab算法计算机视觉
图像处理领域一直以来都是计算机科学和工程学的一个重要方向,图像复原则是其中一个重要的研究方向之一。图像复原旨在通过运用各种滤波算法,对图像进行去噪、恢复和改善,以提高图像的质量和可视化效果。在本文中,我们将介绍如下内容:1.采用二维中值滤波对图像进行复原中值滤波是一种常用的去噪方法,通过取像素周围邻域的中值来替代当前像素值。采用二维中值滤波对图像进行复原,这有助于去除图像中的椒盐噪声和其他噪声,提
- 【深度视觉】第二章:卷积网络的数据
宝贝儿好
深度学习人工智能计算机视觉卷积神经网络
四、卷积网络的数据上个系列我们详细讲解了pytorch框架下的全连接层神经网络DNN。本系列我们开始讲卷积神经网络CNN,ConvolutionalNeuralNetworks。上一章我截取了鲁鹏老师课件里面的一张图,详细展示了和计算机视觉相关的领域,显而易见,这门学科是一门交叉学科,所以尽管扩展你的知识域吧,比如,摄像设备性能,成像原理,图像数据的生成与获取,视频特效,3D,图像复原、图像分割、
- 浅谈halcon图像拼接
耿直小伙
计算机视觉人工智能
图像拼接方法1直接拼接,去两张图,直接拼接,适用于没有变形的,分割的图像复原整个图像.read_image(Image,‘1.bmp’)dev_close_window()dev_open_window_fit_image(Image,0,0,-1,-1,WindowHandle)dev_display(Image)read_image(Image1,‘2.bmp’)dev_close_windo
- 2018年认证杯SPSSPRO杯数学建模B题(第二阶段)动态模糊图像全过程文档及程序
数模竞赛Paid answer
认证杯数学建模笔记数学建模认证杯SPSSPRO数学建模数学建模数据分析
2018年认证杯SPSSPRO杯数学建模动态模糊图像复原B题动态模糊图像原题再现: 人眼由于存在视觉暂留效应,所以看运动的物体时,看到的每一帧画面都包含了一段时间内(大约1/24秒)的运动过程,所以这帧画面事实上是模糊的。对电影的截图来说,动态画面的每一帧也都是模糊的,例如图1为某部电影截图,展现的是在高速飞行中的拍摄效果,所以俯拍到的路面字迹是模糊的。但是一般来说,电脑游戏的每一帧画面都是以清
- 数字图像处理及matlab实现第三版相关概念总结
linqwer1
数字图像处理
目录前言一、图像处理基础1.概述2.数字图像处理的基础3.图像基本运算4.图像变换二、图像处理技术5.图像增强5.1基于直方图处理的图像增强5.1.1直方图的均衡化5.1.2直方图的规定化5.2空间域滤波增强5.2.1空间域平滑滤波器5.2.2空间域锐化滤波器5.3频率域图像增强6.图像复原7.图像压缩编码8.图像分割8.1边缘检测8.2阈值分割8.3区域分割8.4二值图像处理三、图像处理的拓展内
- 130基于MATLAB并结合IBD算法的盲迭代反卷积法进行图像复原
顶呱呱程序
matlab工程应用matlab算法开发语言盲迭代反卷积IBDPSF估计
基于MATLAB并结合IBD算法的盲迭代反卷积法进行图像复原,输出复原前后图像,PSF频谱结果。程序已调通,可直接运行。130matlab盲迭代反卷积IBD(xiaohongshu.com)
- 频率域滤波图像复原的python实现——数字图像处理
筱筱西雨
图像处理python开发语言深度学习opencv图像处理
原理维纳滤波的原理是基于统计方法,旨在通过最小化信号的估计误差来改善信号的质量。它在处理具有噪声干扰的信号时特别有效。维纳滤波旨在从受噪声干扰的信号中恢复原始信号。它假设信号和噪声都是随机过程,并且它们的统计特性是已知的或可估计的。维纳滤波器的设计基于最小化输出和所需信号之间的均方误差(MSE)。数学原理假设x(n)是原始信号,d(n)是观测到的受噪声干扰的信号,y(n)是滤波器的输出。那么,噪声
- 频率域滤波图像复原之带阻滤波器的python实现——数字图像处理
筱筱西雨
图像处理pythonmatlab图像处理opencv计算机视觉深度学习
原理:带阻滤波器(Band-StopFilter)是一种在信号处理领域常用的滤波器,它的主要功能是去除(或减弱)信号中特定频率范围内的成分,同时允许其他频率范围的信号通过。这种滤波器在多种应用中都非常有用,比如去除电子设备中的干扰信号、音频处理中的噪声消除等。频率选择性:带阻滤波器设计用来阻止一个特定的频率带宽内的信号。这个带宽被称为阻带(StopBand),其外的频率区域则被允许通过,这部分称为
- 频率域滤波图像复原之逆滤波的python实现——数字图像处理
筱筱西雨
图像处理python计算机视觉图像处理opencv人工智能深度学习
逆滤波原理逆滤波是一种在频率域进行的图像复原技术,常用于修复由运动模糊等因素引起的图像退化。具体步骤如下:**频率域表示:**首先,将退化的图像通过傅里叶变换从空间域转换到频率域。这使得图像的频率成分变得明显,便于分析和处理。**退化模型识别:**在频率域中,图像退化通常可以表示为原始图像与某个退化函数(比如运动模糊)的卷积。逆滤波需要识别这个退化函数,这通常需要一定的先验知识或假设。**设计逆滤
- 【数字图像处理实验】1. 对输入的原始图像分别做理想、巴特沃斯、高斯低通滤波及高通滤波处理,对比实验效果。 2. 对输入的原始图像叠加不同类型的随机噪声,对比不同的空间滤波方法的图像复原效果。
雨林木风11
数字图像处理数字图像处理滤波器去噪图像处理
实验目的对输入的原始图像分别做理想、巴特沃斯、高斯低通滤波及高通滤波处理,对比实验效果。对输入的原始图像叠加不同类型的随机噪声,对比不同的空间滤波方法的图像复原效果。实验内容理想滤波器理想低通滤波器在以原点为圆心,以D0为半径的圆内,无衰减地通过所有频率,而在该圆外“阻断”所有频率的二维低通滤波,称为理想低通滤波器。由下述函数确定:H(u,v)={1D(u,v)≤D00D(u,v)>D0H(u,v
- 《图像分析基础》的专有名词解析
振华OPPO
深度学习人工智能机器学习
1、图像处理英文:imageprocessing定义:输入是图像数据,输出也是图像数据。涉及到“输入是图像数据,输出也是图像数据”的理论与方法,是图像处理的研究范畴。比如图像采样、图像滤波、图像增强、图像复原、图像编码与解码等。二、图像分析英文:imageanalysis定义:输入是图像数据,输出是可描述性数据。比如输出图像中是几颗大米、每颗大米的周长和面积等数据。涉及到“输入是图像数据,输出是可
- 维纳滤波器图像复原
远方上&肖
matlab图像处理计算机视觉
一、背景下图截取自一幅卫星影像,造成图像质量下降的点扩展函数可近似为高斯模型,并含有加性白噪声。设法估计图像退化的参数,利用维纳滤波进行恢复。二、算法原理(1)首先假设点扩散函数为高斯模型,加性白噪声为高斯噪声,理想的未退化的图像为,那么退化图像可表示为,要想恢复出理想图像,就要估计点扩散函数和加性白噪声;(2)为了更好地估计叠加有白噪声的高斯模糊图像的点扩展函数,可以先对图像进行去噪处理。因此我
- 图像处理---逆滤波和维纳滤波
Vaeeeeeee
图像处理python计算机视觉
文章目录前言一、逆滤波1.1估计退化函数H(u,v)H(u,v)H(u,v)1.1.1观察法1.1.2试验法1.1.3建模法★\bigstar★1.2直接逆滤波1.3半径受限逆滤波二、最小均方误差(维纳)滤波总结参考文献前言本文主要介绍退化图像复原的两种方法:逆滤波和维纳滤波。一、逆滤波图像退化的表达式:g(x,y)=h(x,y)⊙f(x,y)+η(x,y)\begin{aligned}g(x,y
- 读论文:HINet: Half Instance Normalization Network for Image Restoration
木水_
深度学习数字图像文献阅读人工智能深度学习
《HINet:HalfInstanceNormalizationNetworkforImageRestoration》发表于CVPR2021,是旷视科技&复旦大学&北大在图像复原方面的的最新进展,所提方案取得了NTIRE2021图像去模糊Track2赛道冠军。下面谈谈该文章的主要技术点。1.HIN(HalfInstanceNormalization)Block与resblock相比,主要差别在于:
- 灰度图像复原——空间滤波——逆谐波均值滤波器(Matlab)
lengo
图像处理图像复原空间滤波逆谐波均值滤波
%%%%%%------------------图像复原之空间滤波---------------------------------clc;clear;%读入图像,并转换为double型I=imread('D:\GrayFiles\5-13.tif');I_D=im2double(I);[MM,NN]=size(I_D);%%%%%----------------------1、均值滤波器----
- 图像去雾算法--暗通道先验去雾算法
zhangmeili_9
计算机视觉深度学习人工智能
图像去雾:在雾天拍摄的图像容易受雾或霾的影响,导致图片细节模糊、对比度低以至于丢失图像重要信息,为解决此类问题图像去雾算法应运而生。图像去雾算法是以满足特定场景需求、突出图片细节并增强图片质量为目的的一种图像分析与处理方法。图像去雾主要包括基于图像增强的去雾算法,基于图像复原的去雾算法(基于卷积神经网络的去雾算法)。暗通道先验去雾算法:所谓暗通道是一个基本的假设,这个假设认为,在绝大多数的非天空的
- 退化函数及多种复原方法【Matlab】
赵唯淞
资源图像去噪图像处理
退化函数建模 通过点扩散函数PSF进行图像复原的实验,添加适当的噪声。 fspecial函数中,’motion’指的是运动模糊算子。代码示例%checkerboard产生测试板图像,第一个参数是每个正方形一边的像素数,第二个参数行数,第三为列数(缺省则等于行数)f=checkerboard(8);%产生一个一面为8个正方形的测试板PSF=fspecial('motion',7,45);%运动模
- 低通卷积滤波器matlab程序,matlab自带函数-盲卷积-加噪-卷积-滤波-小结
weixin_39941859
低通卷积滤波器matlab程序
总结自网上、matlab帮助文档等,都是图像复原中经常用到的基础函数或操作。可以模拟图像降质过程和用一些经典方法盲解卷积复原的过程。一、卷积:conv2、convn、convmtx2卷积的计算步骤:(1)卷积核绕自己的核心元素顺时针旋转180度(2)移动卷积核的中心元素,使它位于输入图像待处理像素的正上方(3)在旋转后的卷积核中,将输入图像的像素值作为权重相乘(4)第三步各结果的和做为该输入像素对
- 最小二乘方图像复原matlab实现,图像复原之约束最小二乘方滤波
摇滚自由鸟
图像复原,简单讲,就是恢复图像原本的面貌,但因为各类缘由如图像采集过程当中出现的偏差致使获得的数字图像不清晰,不是咱们人眼看到的实物场景那样,所以须要采起技术手段去除图像的不清晰。约束最小二乘方滤波就是其中一种较好的方法。在维纳滤波那一篇讲过,维纳滤波要求未退化图像和噪声的功率谱必须是已知的,一般这两个功率谱很难估计,尽管用一个常数去估计功率谱比,然而并不老是一个合适的解。约束最小二乘方滤波要求噪
- 20190505 0620 2330 阴雨
么得感情的日更机器
图片发自App今天早早起,然后喝粥吃蛋,去实验室。美好的早晨,天气还很不错呢。完成一轮音标的学习,口语也打卡了,这种模式很奶思,然后开始ANN,接着去上课,图像复原与图像彩色技术,讲的不错呢。上午没了下午呢,继续ANN,睡觉,看小说,上课,好无聊的虚拟仪器呢,老师讲的太细了,没有必要的说,又不是小孩子。然后下午结束了。晚上呢,继续ANN,低落,总结,计划,添加季总结,这个季表现的好差劲,下一个季要
- 一体化模型图像去雨+图像去噪+图像去模糊(图像处理-图像复原-代码+部署运行教程)
阿利同学
图像处理图像去雾图像去雨图像复原图像去噪图像去模糊
本文主要讲述了一体化模型进行去噪、去雨、去模糊,也就是说,一个模型就可以完成上述三个任务。实现了良好的图像复原功能!先来看一下美女复原.jpg具体的:在图像恢复任务中,需要在恢复图像的过程中保持空间细节和高级上下文信息之间的复杂平衡。在这篇论文中,我们提出了一种新颖的协同设计,可以在这些竞争目标之间实现最佳平衡。我们的主要提议是一个多阶段架构,逐步学习对退化输入进行恢复的函数,从而将整个恢复过程分
- 2.0 图像处理综述
enthwxq
DIPDIP
一、综述视觉分为:感觉(perception)和知觉(perception)两部分,感觉重点于视觉信息的传感,采集,转换,变换。知觉在于处理和推理。如今,感觉这一步都是数字化的。它们的核心都在于理解图像。在整个视觉(DV)的体系中,是分层架构的。笼统的分为高中低三层。A.低层包括但不限于:0成像系统(彩色成像)1(彩色)图像处理(输入输出都是图像):图像增强(主观以人为目的),图像复原(客观回复图
- 图像复原与重建,解决噪声的几种空间域复原方法(数字图像处理概念 P4)
Nesb01t
数字图像处理图像处理
文章目录图像复原模型噪声模型只存在噪声的空间域复原图像复原模型噪声模型只存在噪声的空间域复原
- HINet | 性能炸裂,旷视科技提出适用于low-level问题的Half Instance Normalization
HappyAIWalker
图像复原图像超分深度学习
编辑:Happy首发:AIWalker大家好,我是Happy。一直以来,甚少有normalization技术在low-level得到广泛应用并取得优异性能,就算得到应用其性能也会受限或者造成异常的视觉效果。不过,现在有了!旷视科技的研究员提出了一种HalfInstanceNormalization技术用于图像复原并在不同的low-level领域取得了SOTA性能,先来看一下其刷新的性能(注:以下数
- 第5章 Python 数字图像处理(DIP) - 图像复原与重建2 - 瑞利噪声
jasneik
#第5章图像复原与重建图像处理图像识别pythonnumpyopencv
标题瑞利噪声瑞利噪声瑞利噪声的PDF为P(z)={2b(z−a)e−(z−a)2/b,z≥a0,za,output,0)returnoutput更正下面代码,如果之前已经复制的,也请更正defadd_rayleigh_noise(img,a=3):"""addrayleighnoiseforimageparam:img:inputimage,dtype=uint8param:mean:noisem
- DiffIR: Efficient Diffusion Model for lmage Restoration
通街市密人有
扩散模型深度学习人工智能计算机视觉
DiffIR:用于图像复原的有效扩散模型论文链接:https://arxiv.org/abs/2303.09472项目链接:https://github.com/Zj-BinXia/DiffIRAbstract扩散模型(DM)通过将图像合成过程建模为去噪网络的顺序应用,实现了SOTA的性能。然而,与图像合成从头生成每个像素不同,图像复原(IR)的大部分像素是给定的。因此,对于IR,传统的DMs在大
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST