二分法查找,也称折半查找,是一种在有序数组中查找特定元素的搜索算法。
折半查找,优点:是比较次数少,查找速度快,平均性能好;
缺点:要求待查表为有序表,且插入删除困难。
折半查找方法适用于不经常变动而查找频繁的有序列表。
假设表中元素是按升序排列,将表中间位置记录与查找关键字比较,如果两者相等,则查找成功;否则利用中间值将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件值,使查找成功,或直到子表不存在为止,此时查找不成功。
查找过程可以分为以下步骤:
1.从有序数组的中间的元素开始搜索,如果该元素正好是目标元素(即要查找的元素),则搜索过程结束,否则进行下一步。
2.如果目标元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半区域查找,然后重复第一步的操作。
3.如果某一步数组为空,则表示找不到目标元素。
// 非递归算法
public static int binarySearch(int[] arr, int key){
if(arr == null || arr.length == 0){
return -1;
}
int left = 0;
int right = arr.length - 1;
while(left <= right){
int mid = (left + right ) / 2;
int midArr = arr[mid];
if(midArr == key){
return mid;
}else if(midArr < key){
left = mid + 1;
}else if(midArr > key){
right = mid - 1;
}else{
return -1;
}
}
return -1;
}
public static void main(String[] a){
int[] arr = {1, 2, 3, 4, 5, 6, 7, 8};
System.out.println(binarySearch(arr, 8));
}
// 递归算法
function binary_search(arr,low, high, key) {
if (low > high){
return -1;
}
var mid = parseInt((high + low) / 2);
if(arr[mid] == key){
return mid;
}else if (arr[mid] > key){
high = mid - 1;
return binary_search(arr, low, high, key);
}else if (arr[mid] < key){
low = mid + 1;
return binary_search(arr, low, high, key);
}
};
var arr = [1,2,3,4,5,6,7,8,9,10,11,23,44,86];
var result = binary_search(arr, 0, 13, 10);
alert(result); // 9 返回目标元素的索引值
--------------------------------------------------------------------------------------------
2 二分查找的变种
关于二分查找,如果条件稍微变换一下,比如:数组之中的数据可能可以重复,要求返回匹配的数据的最小(或最大)的下标;更近一步, 需要找出数组中第一个大于key的元素(也就是最小的大于key的元素的)下标,等等。 这些,虽然只有一点点的变化,实现的时候确实要更加的细心。
二分查找的变种和二分查找原理一样,主要就是变换判断条件(也就是边界条件),如果想直接看如何记忆这些变种的窍门,请直接翻到本文最后。下面来看几种二分查找变种的代码:
2.1 查找第一个与key相等的元素
查找第一个相等的元素,也就是说等于查找key值的元素有好多个,返回这些元素最左边的元素下标。
复制代码
// 查找第一个相等的元素
static int findFirstEqual(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
if (left < array.length && array[left] == key) {
return left;
}
return -1;
}
2.2 查找最后一个与key相等的元素
查找最后一个相等的元素,也就是说等于查找key值的元素有好多个,返回这些元素最右边的元素下标。
// 查找最后一个相等的元素
static int findLastEqual(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] <= key) {
left = mid + 1;
}
else {
right = mid - 1;
}
}
if (right >= 0 && array[right] == key) {
return right;
}
return -1;
}
2.3 查找最后一个等于或者小于key的元素
查找最后一个等于或者小于key的元素,也就是说等于查找key值的元素有好多个,返回这些元素最右边的元素下标;如果没有等于key值的元素,则返回小于key的最右边元素下标。
// 查找最后一个等于或者小于key的元素
static int findLastEqualSmaller(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] > key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return right;
}
2.4 查找最后一个小于key的元素
查找最后一个小于key的元素,也就是说返回小于key的最右边元素下标。
// 查找最后一个小于key的元素
static int findLastSmaller(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return right;
}
2.5 查找第一个等于或者大于key的元素
查找第一个等于或者大于key的元素,也就是说等于查找key值的元素有好多个,返回这些元素最左边的元素下标;如果没有等于key值的元素,则返回大于key的最左边元素下标。
复制代码
// 查找第一个等于或者大于key的元素
static int findFirstEqualLarger(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return left;
}
2.6 查找第一个大于key的元素
查找第一个等于key的元素,也就是说返回大于key的最左边元素下标。
// 查找第一个大于key的元素
static int findFirstLarger(int[] array, int key) {
int left = 0;
int right = array.length - 1;
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] > key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return left;
}
3 二分查找变种总结
// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] ? key) {
//... right = mid - 1;
}
else {
// ... left = mid + 1;
}
}
return xxx;
二分查找变种较多,不过它们的“套路”是一样的,以上代码就是其套路,如何快速写出二分查找的代码,只需按照以下步骤即可:
1 首先判断出是返回left,还是返回right
因为我们知道最后跳出while (left <= right)循环条件是right < left,且right = left - 1。最后right和left一定是卡在"边界值"的左右两边,如果是比较值为key,查找小于等于(或者是小于)key的元素,则边界值就是等于key的所有元素的最左边那个,其实应该返回left。
以数组{1, 2, 3, 3, 4, 5}为例,如果需要查找第一个等于或者小于3的元素下标,我们比较的key值是3,则最后left和right需要满足以下条件:
我们比较的key值是3,所以此时我们需要返回left。
2 判断出比较符号
int mid = (left + right) / 2;
if (array[mid] ? key) {
//... right = xxx;
}
else {
// ... left = xxx;
}
也就是这里的 if (array[mid] ? key) 中的判断符号,结合步骤1和给出的条件,如果是查找小于等于key的元素,则知道应该使用判断符号>=,因为是要返回left,所以如果array[mid]等于或者大于key,就应该使用>=,以下是完整代码
// 查找小于等于key的元素
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}