- 超详细EM算法举例及推导
老实人小李
聚类算法聚类
最好先学习一下极大似然EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”中,可见EM算法在机器学习、数据挖掘中的影响力。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussianmixturemodel,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。EM算法是一种迭代优
- 分类算法-----决策树(包括ID3,C4.5)
Yt_Sports
机器学习算法机器学习算法决策树
第一篇:决策树学习(MachineLearning&DataMining)引言最近在面试中,除了基础&算法&项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类&分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常
- 数据挖掘十大算法--K-均值聚类算法
peterchan88
机器学习数据挖掘数据挖掘kmeans
一、相异度计算在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。但是,计算机没有这种直观感受能力,我们必须对相异度在数学上进行定量定义。设,其中X,Y是两个元素项,各自具有n个可度量特征属性,那么X和Y的相异度定义为:,其中R为实数域。也就是说相异度
- 关联规则挖掘理论和算法(数据挖掘十大算法---Apriori算法)
Gyanga
算法数据挖掘python
一、(Apriori)发现频繁项目集通过用户给定的最小支持度,寻找所有频繁项目集(满足Support不小于Minsupport的所有项目子集)逐层发现算法,按照项集的长度由下到大逐级进行,并最后发现频繁几项集项(Item)购物篮(Transcation):交易项集(Itemset):所有项的集合K项集:在集合中包含K个项的项集支持度:support(x)=count(x)/|D|*100%——x出
- 数据挖掘十大算法--Apriori算法
Wzideng
各种计算机相关小知识大数据学习python学习算法数据挖掘人工智能python大数据排序算法
一、Apriori算法概述Apriori算法是一种用于关联规则挖掘的经典算法。它用于在大规模数据集中发现频繁项集,进而生成关联规则。关联规则揭示了数据集中项之间的关联关系,常被用于市场篮分析、推荐系统等应用。以下是Apriori算法的基本概述:频繁项集:项集(Itemset):项集是数据集中的一个或多个项(item)的集合。项可以是任何可以在数据集中唯一标识的元素,例如购物篮中的商品。支持度(Su
- 【1】机器学习实战peter Harrington——学习笔记
手可摘辰
机器学习机器学习深度学习python
机器学习实战peterHarrington——学习笔记综述数据挖掘十大算法本书结构一、机器学习基础1.1机器学习1.2关键术语1.3机器学习主要任务1.4如何选择合适的算法1.5开发机器学习应用程序的步骤综述机器学习算法在包含信息检索和数据挖掘在内的多个领域都有着十分广泛的应用。本书没有从理论角度来揭示机器学习算法背后的数学原理,而是通过“原理简述+问题实例+实际代码+运行效果”来介绍每一个算法。
- SVM(上):如何用一根棍子将蓝红两色球分开?
秋无之地
数据分析支持向量机算法机器学习
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️作者:秋无之地简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。欢迎小伙伴们点赞、收藏⭐️、留言、关注,关注必回关上一篇文章已经跟大家介绍过《朴素贝叶斯分类(下):数据挖掘十大算法之一》,相信大家对朴素贝叶斯分类(下)都有一个基本的认识。下面我讲一
- 朴素贝叶斯分类(上):数据挖掘十大算法之一
秋无之地
数据分析数据挖掘算法分类
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️作者:秋无之地简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。欢迎小伙伴们点赞、收藏⭐️、留言、关注,关注必回关上一篇文章已经跟大家介绍过《决策树(下):泰坦尼克号乘客的生存预测》,相信大家对决策树(下)都有一个基本的认识。下面我讲一下:朴素贝叶
- 朴素贝叶斯分类(下):数据挖掘十大算法之一
秋无之地
数据分析数据挖掘算法分类
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️作者:秋无之地简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。欢迎小伙伴们点赞、收藏⭐️、留言、关注,关注必回关上一篇文章已经跟大家介绍过《朴素贝叶斯分类(上):数据挖掘十大算法之一》,相信大家对朴素贝叶斯分类(上)都有一个基本的认识。下面我讲一
- 决策树(下):泰坦尼克号乘客的生存预测(完整代码)
秋无之地
数据分析数据挖掘算法决策树
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️作者:秋无之地简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。欢迎小伙伴们点赞、收藏⭐️、留言、关注,关注必回关上一篇文章已经跟大家介绍过《决策树(中):数据挖掘十大算法之一》,相信大家对决策树(中)都有一个基本的认识。下面我讲一下:决策树(下)
- 决策树(上):数据挖掘十大算法之一
秋无之地
数据分析python数据分析算法
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️作者:秋无之地简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。欢迎小伙伴们点赞、收藏⭐️、留言、关注,关注必回关上一篇文章已经跟大家介绍过《超详细!一次学会Python数据可视化的10种技能》,相信大家对Python数据可视化都有一个基本的认识。
- 决策树(中):数据挖掘十大算法之一
秋无之地
数据分析数据挖掘算法决策树
⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️作者:秋无之地简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。欢迎小伙伴们点赞、收藏⭐️、留言、关注,关注必回关上一篇文章已经跟大家介绍过《决策树(上):数据挖掘十大算法之一》,相信大家对决策树(上)都有一个基本的认识。下面我讲一下:决策树(中)
- 决策树——基础知识
mxylulu
基本概念聚类:根据信息相似原则将样本划分为若干个类分类:根据决策属性给样本区分归类训练集:一部分类别已知的样本数据(局部代替整体)用于建立预测模型,挖掘数据规律测试集:另一部分类别已知的样本数据用于评估模型预测能力,从而确定规律是否正确数据挖掘十大算法image.pngPS:这也是我接下来需要学习的方向。决策树的基本概念决策树是一种树形结构,包括:内部节点,分支和叶节点。
- SVM在二维平面的理解
安心远
SVM是数据挖掘十大算法之一,其原理不是很好理解,学习了一些资料之后做一个浅显的笔记,欢迎有机器学习爱好的同仁来交流,和批评指正。SVM介绍SVM(SupportVectorMachine)指的是支持向量机,是一种分类算法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。在深度学习出现之前,SVM被认为机器学习中近十几年表现最好的算法。SVM是在一个向量空间内通过找
- EM算法(1)
蔷北
摘自https://zhuanlan.zhihu.com/p/409917841.摘要EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussianmixturemodel,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。【
- 数据挖掘十大算法之分类算法(决策树模型)
每天都要加油呀!
#数据仓库与数据挖掘数据挖掘决策树模型
文章目录1.决策树的概念2.构建决策树3.决策树中的信息论原理3.1信息量3.2熵3.3分类集合信息量3.4信息增益接上篇文章分类介绍及评价指标我们讨论了分类算法中,分类模型的选择是非常关键的一步,接下来我们分析常用的分类模型——决策树模型在本文中没有举例,全部为概念,所有举例都在ID3算法的学习中1.决策树的概念决策树是一种树形结构,决策树包含一系列规则,一般我们使用决策树将大型记录集分割为小记
- 数据挖掘十大算法:PageRank算法原理及实现
也曾被风温柔以待
算法大数据
一、PageRank的概念PageRank,网页排名,是一种由根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,它由LarryPage和SergeyBrin在20世纪90年代后期发明,并以拉里·佩吉(LarryPage)之姓来命名。PageRank是Google专有的算法,用于衡量特定网页相对于搜索引擎索引中的其他网页而言的重要程度。PageRank算法计算每一个网页的PageRank
- 数据挖掘十大算法之Apriori算法
每天都要加油呀!
#数据仓库与数据挖掘数据挖掘大数据
文章目录1.“啤酒与尿布”的案例2.Aprior算法核心术语事物集记录(事务)项目(项)项目集(项集)K项集支持度(Support)置信度(Confidence)最小支持度(min_support)最小置信度(min_confidence)提升度频繁K项(目)集候选K项(目)集3.Aprior算法的三大性质(关联规则的三大性质)4.Aprior算法实现过程5.数据挖掘5.1寻找关联属性5.2生成关
- (有监督)Python实现KNN算法(学习笔记)
maligebilaowang
机器学习算法KNN有监督机器学习
一、前言数据挖掘十大算法–KNN算法。K-NN是一种基于实例的学习,或者是局部近似和将所有计算推迟到分类之后的惰性学习。k-近邻算法是所有的机器学习算法中最简单的之一。基于实例的学习方法只是简单地把训练样例存储起来。从这些实例中泛化的工作被推迟到必须分类新的实例时。每当学习器遇到一个新的查询实例,它分析这个新实例与以前存储的实例的关系,并据此把一个目标函数值赋给新实例。KNN算法虽然简单,但是很经
- 基于EM算法的参数辨识和分类识别算法matlab仿真
我爱C编程
Matlab深度学习matlabEM算法参数辨识分类识别
目录1.算法描述2.仿真效果预览3.MATLAB核心程序4.完整MATLAB1.算法描述EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”中,可见EM算法在机器学习、数据挖掘中的影响力。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussianmixturemodel,简称GMM)的参数;隐式马尔科夫
- 从决策树学习谈到贝叶斯分类算法、EM、HMM
v_JULY_v
机器学习十大算法系列算法vector自然语言处理string数据挖掘
从决策树学习谈到贝叶斯分类算法、EM、HMM引言最近在面试中,除了基础&算法&项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类&分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常常回顾思考。行文杂乱,但侥幸若
- 从决策树学习谈到贝叶斯分类算法、EM、HMM --别人的,拷来看看
dngirz6194
人工智能面试java
从决策树学习谈到贝叶斯分类算法、EM、HMM引言最近在面试中,除了基础&算法&项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类&分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常常回顾思考。行文杂乱,但侥幸若
- 数据挖掘十大算法之分类算法(分类介绍及评价指标)
每天都要加油呀!
#数据仓库与数据挖掘数据挖掘
文章目录1.分类相关知识1.1分类的概念1.2分类的流程1.3分类模型评价标准2.二分类分类案例参考文章:接上篇文章,接下来学习挖掘算法中的分类算法:首先我们应该知道数据挖掘十大算法中可以简单的进行分类,分为分类算法,聚类算法和关联规则三大类算法分类连接分析:PageRank关联分析:Apriori分类算法:ID3、C4.5,朴素贝叶斯,SVM,KNN,Adaboost,CART聚类算法:K-Me
- 数据科学学习笔记8 --- 分类(有监督的学习)
Y_Cxhiao
数据科学课程笔记数据科学
数据挖掘十大算法中的C4.5和CART(分类和回归树)算法都是决策树算法。其他常用的决策树算法有C5.0、FuzzyC4.5、SLIQ(Mehta1996)、SPRINT(Shafer1996)等。1决策树算法·决策树是一种由节点和有向边组成的层次结构,如下图所示,树中包含三种节点·根节点(Rootnode),没有入边,但有零条或者多条出边·内部节点(Internalnode),有一条入边和两条或
- 数据挖掘十大算法---朴素贝叶斯
睡醒了叭
数据挖掘算法python
一、介绍朴素贝叶斯:基于贝叶斯定理与特征条件独立假设的分类方法优点:原理和实现都比较简单;对小规模的数据表现很好,能处理多分类任务;对缺失数据不太敏感,常用与文本分类。缺点:假设属性之间相互独立,这个假设在实际应用中往往是不成立的;在属性个数比较多或者属性之间相关性较大时,分类效果不好。二、概念解释先验概率:根据以往经验和分析得到的概率。记为:P(Y=Ci),i=1,2,3,….K联合概率:指在多
- 习题:PageRank算法原理——Python实现(Google矩阵)
spiritqi
数据挖掘人工智能
参考数据挖掘十大算法(六):PageRank算法原理与Python实现_梦想总是要不可及,是不是应该放弃的博客-CSDN博客PageRand算法:历史上,PageRank算法作为计算互联网网页重要度的算法被提出。PageRank是定义在网页集合上的一个函数,它对每个网页给出一个正实数,表示网页的重要程度,整体构成一个向量,PageRank值越高,网页就越重要,在互联网搜索的排序中可能就被排在前面。
- machine learning KNN
AdaLeery
机器学习
本博客是机器学习实战的读书笔记......数据挖掘十大算法:C4.5决策树k-means支持向量机SVMApriori最大期望法EMPageRank算法AdaBoot算法K-邻近算法(KNN)朴素贝叶斯算法NB分类回归树(CART算法)k-邻近算法首先,其最终是选择频率最高的类别作为当前点的预测分类,属于监督式学习....计算数据集中的点与当前点的距离按照点距离递增次序..排序选取与当前距离最小的
- 从决策树学习谈到贝叶斯分类算法、EM、HMM
weixin_34402090
人工智能面试java
2019独角兽企业重金招聘Python工程师标准>>>引言最近在面试中,除了基础&算法&项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法(当然,这完全不代表你将来的面试中会遇到此类问题,只是因为我的简历上写了句:熟悉常见的聚类&分类算法而已),而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关数据挖掘十大算法的系列文章以作为自己备试之用,甚至以备将来常常回顾思考。行文杂乱
- Expectation Maximization Algorithm
1zeryu
EM(Expectation-Maximum)算法也称期望最大化算法,曾入选“数据挖掘十大算法”中,可见EM算法在机器学习、数据挖掘中的影响力。EM算法是最常见的隐变量估计方法,在机器学习中有极为广泛的用途,例如常被用来学习高斯混合模型(Gaussianmixturemodel,简称GMM)的参数;隐式马尔科夫算法(HMM)、LDA主题模型的变分推断等等。本文对EM算法做一个直观的介绍
- 数据挖掘十大算法
小鬼_0101
机器学习机器学习算法数据挖掘
数据挖掘十大算法一、C4.5算法二、K-Means算法三、朴素贝叶斯算法四、K最近邻分类算法(KNN)五、EM最大期望算法六、PageRank算法七、AdaBoost八、Apriori算法九、SVM支持向量机十、CART分类与回归树一、C4.5算法ID3算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><