【Keras-MobileNet v1】CIFAR-10

系列连载目录

  • 请查看博客 《Paper》 4.1 小节 【Keras】Classification in CIFAR-10 系列连载

学习借鉴

  • github:BIGBALLON/cifar-10-cnn
  • 知乎专栏:写给妹子的深度学习教程
  • Mobilenet Caffe 代码:https://github.com/shicai/MobileNet-Caffe/blob/master/mobilenet_deploy.prototxt
  • Mobilenet Keras 代码:https://github.com/Hedlen/Mobilenet-Keras/blob/master/model/mobilenet.py

参考

  • 【Keras-CNN】CIFAR-10
  • 本地远程访问Ubuntu16.04.3服务器上的TensorBoard
  • caffe代码可视化工具

代码下载

  • 链接:https://pan.baidu.com/s/1UYbkq56IVBB-fHHlG7p3yg
    提取码:lpjd

硬件

  • TITAN XP

文章目录

  • 1 理论基础
  • 2 Mobilenet 代码实现
    • 2.1 mobilenet
    • 2.2 mobilenet_n
    • 2.3 mobilenet_slim
    • 2.4 mobilenet_slim_n
    • 2.5 mobilenet_slim_n_thinner
    • 2.6 mobilenet_slim_n_0.75 / 0.5
  • 3 总结

1 理论基础

参考【MobileNet】《MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications》
精度相当,参数量更少,计算量更少,速度更快

2 Mobilenet 代码实现

2.1 mobilenet

1)导入库,设置好超参数

import os  
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"   
os.environ["CUDA_VISIBLE_DEVICES"]="0" 

import keras
from keras.datasets import cifar10
from keras import backend as K
from keras.layers import Input, Conv2D,GlobalAveragePooling2D, Dense, BatchNormalization, Activation
from keras.models import Model
from keras.layers import DepthwiseConv2D

from keras import optimizers,regularizers
from keras.preprocessing.image import ImageDataGenerator
from keras.initializers import he_normal
from keras.callbacks import LearningRateScheduler, TensorBoard, ModelCheckpoint

num_classes        = 10
batch_size         = 64         # 64 or 32 or other
epochs             = 300
iterations         = 782       
USE_BN=True
DROPOUT=0.2 # keep 80%
CONCAT_AXIS=3
weight_decay=1e-4
DATA_FORMAT='channels_last' # Theano:'channels_first' Tensorflow:'channels_last'

log_filepath  = './mobilenet'

2)数据预处理并设置 learning schedule

def color_preprocessing(x_train,x_test):
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    mean = [125.307, 122.95, 113.865]
    std  = [62.9932, 62.0887, 66.7048]
    for i in range(3):
        x_train[:,:,:,i] = (x_train[:,:,:,i] - mean[i]) / std[i]
        x_test[:,:,:,i] = (x_test[:,:,:,i] - mean[i]) / std[i]
    return x_train, x_test

def scheduler(epoch):
    if epoch < 100:
        return 0.01
    if epoch < 200:
        return 0.001
    return 0.0001

# load data
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test  = keras.utils.to_categorical(y_test, num_classes)
x_train, x_test = color_preprocessing(x_train, x_test)

3)定义网络结构
depth-wise separable convolution
keras官方文档:https://keras.io/layers/convolutional/#depthwiseconv2d
【Keras-MobileNet v1】CIFAR-10_第1张图片

def depthwise_separable(x,params):
    # f1/f2 filter size, s1 stride of conv
    (s1,f2) = params
    x = DepthwiseConv2D((3,3),strides=(s1[0],s1[0]), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Conv2D(int(f2[0]), (1,1), strides=(1,1), padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    return x
  • s1 控制 depth-wise convolution 的 stride,虽然 channels 固定,同输入一样,但是可以通过步长来改变输入的 resolution.
  • f2 表示 point-wise convolution 的 filters 数量,也即输出的 channels

4)搭建网络
用 3)中设计好的模块来搭建网络,整体 architecture 如下:
【Keras-MobileNet v1】CIFAR-10_第2张图片
括号表示 depth-wise separable convolution = depth-wise convolution + point-wise convolution

Down sampling ( s t r i d e = 2 stride=2 stride=2) is handled with strided convolution in the depthwise convolutions as well as in the first layer.

def MobileNet(img_input,shallow=False, classes=10):
    """Instantiates the MobileNet.Network has two hyper-parameters
        which are the width of network (controlled by alpha)
        and input size.
        # Arguments
            alpha: optional parameter of the network to change the 
                width of model.
            shallow: optional parameter for making network smaller.
            classes: optional number of classes to classify images
                into.
    """
    x = Conv2D(int(32), (3,3), strides=(2,2), padding='same')(img_input)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)

    x = depthwise_separable(x,params=[(1,),(64,)])
    x = depthwise_separable(x,params=[(2,),(128,)])
    x = depthwise_separable(x,params=[(1,),(128,)])
    x = depthwise_separable(x,params=[(2,),(256,)])
    x = depthwise_separable(x,params=[(1,),(256,)])
    x = depthwise_separable(x,params=[(2,),(512,)])
    
    if not shallow:
        for _ in range(5):
            x = depthwise_separable(x,params=[(1,),(512,)])
            
    x = depthwise_separable(x,params=[(2,),(1024,)])
    x = depthwise_separable(x,params=[(1,),(1024,)])

    x = GlobalAveragePooling2D()(x)
    out = Dense(classes, activation='softmax')(x)
    return out

5)生成模型

img_input=Input(shape=(32,32,3))
output = MobileNet(img_input)
model=Model(img_input,output)
model.summary()

Total params: 3,250,058
Trainable params: 3,228,170
Non-trainable params: 21,888

6)开始训练

# set optimizer
sgd = optimizers.SGD(lr=.1, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

# set callback
tb_cb = TensorBoard(log_dir=log_filepath, histogram_freq=0)
change_lr = LearningRateScheduler(scheduler)
cbks = [change_lr,tb_cb]

# set data augmentation
datagen = ImageDataGenerator(horizontal_flip=True,
                             width_shift_range=0.125,
                             height_shift_range=0.125,
                             fill_mode='constant',cval=0.)
datagen.fit(x_train)

# start training
model.fit_generator(datagen.flow(x_train, y_train,batch_size=batch_size),
                    steps_per_epoch=iterations,
                    epochs=epochs,
                    callbacks=cbks,
                    validation_data=(x_test, y_test))
model.save('mobilenet.h5')

7)结果分析
training accuracy 和 training loss
在这里插入图片描述
【Keras-MobileNet v1】CIFAR-10_第3张图片【Keras-MobileNet v1】CIFAR-10_第4张图片

  • accuracy
    在这里插入图片描述
  • loss
    在这里插入图片描述
    97% +

test accuracy 和 test loss
在这里插入图片描述
【Keras-MobileNet v1】CIFAR-10_第5张图片【Keras-MobileNet v1】CIFAR-10_第6张图片
…………
精度很低,80%+,耐克出现,过拟合严重。很好理解,在 imagenet 上,输入224,最后一次 convolution 的 resolution 为 7×7,down sampling 了5次( 2 5 = 32 2^5=32 25=32),CIFAR-10 输入32,down sampling 4 次之后,convolution 的作用就很有限了。

2.2 mobilenet_n

2.1 明显过拟合

  • 我们在 point-wise 里加正则化策略,为啥不在 depth-wise convolution 中也加入 l2 regularization + weight decay 策略呢?因为论文中有一句是这么说的:put very little or no weight decay (l2 regularization) on the depthwise filters since their are so few parameters in them,我们暂时只改 point-wise convolution 部分;
  • 改变 depth-wise 和 point-wise convolution 的初始化策略,默认 glorot_uniform,我们用 he_normal
    代码修改部分如下
def depthwise_separable(x,params):
    # f1/f2 filter size, s1 stride of conv
    (s1,f2) = params
    x = DepthwiseConv2D((3,3),strides=(s1[0],s1[0]), padding='same',depthwise_initializer="he_normal")(x)
    x = BatchNormalization(momentum=0.9, epsilon=1e-5)(x)
    x = Activation('relu')(x)
    x = Conv2D(int(f2[0]), (1,1), strides=(1,1), padding='same',
               kernel_initializer="he_normal",kernel_regularizer=regularizers.l2(weight_decay))(x)
    x = BatchNormalization(momentum=0.9, epsilon=1e-5)(x)
    x = Activation('relu')(x)
    return x

其它部分代码同 mobilenet

参数量如下(不变):

Total params: 3,250,058
Trainable params: 3,228,170
Non-trainable params: 21,888

  • mobilenet
    Total params: 3,250,058

结果分析如下:
training accuracy 和 training loss
在这里插入图片描述
【Keras-MobileNet v1】CIFAR-10_第7张图片
【Keras-MobileNet v1】CIFAR-10_第8张图片

test accuracy 和 test loss
在这里插入图片描述
【Keras-MobileNet v1】CIFAR-10_第9张图片
【Keras-MobileNet v1】CIFAR-10_第10张图片

…………
精度提升了,84%+,还是耐克出现,过拟合严重。还是那样理解,在 imagenet 上,输入224,最后一次 convolution 的 resolution 为 7×7,down sampling 了5次( 2 5 = 32 2^5=32 25=32),CIFAR-10 输入32,down sampling 4 次之后,convolution 的作用就很有限了。

2.3 mobilenet_slim

在2.2小节的基础上,类似 【Keras-Inception-resnet v1】CIFAR-10、【Keras-Inception-resnet v2】CIFAR-10,我们把前三个 down sampling 取消,也即前三个stride=2 改为 stride =1,保证 feature map 的 resolution.
代码修改部分如下:

def MobileNet(img_input,shallow=False, classes=10):
    """Instantiates the MobileNet.Network has two hyper-parameters
        which are the width of network (controlled by alpha)
        and input size.
        # Arguments
            alpha: optional parameter of the network to change the 
                width of model.
            shallow: optional parameter for making network smaller.
            classes: optional number of classes to classify images
                into.
    """
    # change stride
    x = Conv2D(int(32), (3,3), strides=(1,1), padding='same',
              kernel_initializer="he_normal",kernel_regularizer=regularizers.l2(weight_decay))(img_input) # change stride
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = depthwise_separable(x,params=[(1,),(64,)])
    x = depthwise_separable(x,params=[(1,),(128,)])# change stride
    x = depthwise_separable(x,params=[(1,),(128,)])
    x = depthwise_separable(x,params=[(1,),(256,)])# change stride
    x = depthwise_separable(x,params=[(1,),(256,)])
    x = depthwise_separable(x,params=[(2,),(512,)])
    if not shallow:
        for _ in range(5):
            x = depthwise_separable(x,params=[(1,),(512,)])
            
    x = depthwise_separable(x,params=[(2,),(1024,)])
    x = depthwise_separable(x,params=[(1,),(1024,)])

    x = GlobalAveragePooling2D()(x)
    out = Dense(classes, activation='softmax')(x)
    return out

其它部分代码同:mobilenet_n
参数量如下(不变):

Total params: 3,250,058
Trainable params: 3,228,170
Non-trainable params: 21,888

  • mobilenet
    Total params: 3,250,058
  • mobilenet_n
    Total params: 3,250,058

结果分析如下:
training accuracy 和 training loss
【Keras-MobileNet v1】CIFAR-10_第11张图片
【Keras-MobileNet v1】CIFAR-10_第12张图片
【Keras-MobileNet v1】CIFAR-10_第13张图片
到 99.9%了,好兆头!训练时间增加了很多,很好理解,因为 resolution 提高了,计算量自然提高了
test accuracy 和 test loss
【Keras-MobileNet v1】CIFAR-10_第14张图片
【Keras-MobileNet v1】CIFAR-10_第15张图片
【Keras-MobileNet v1】CIFAR-10_第16张图片
…………
【Keras-MobileNet v1】CIFAR-10_第17张图片
精度92%+,缓解了过拟合

2.4 mobilenet_slim_n

在2.3的基础上,尝试对 depth-wise convolution 来一下 l2 regularization + weight decay
论文中说了 put very little or no weight decay (l2 regularization) on the depthwise filters since their are so few parameters in them
代码修改部分如下

def depthwise_separable(x,params):
    # f1/f2 filter size, s1 stride of conv
    (s1,f2) = params
    x = DepthwiseConv2D((3,3),strides=(s1[0],s1[0]), padding='same',
                        depthwise_initializer="he_normal",depthwise_regularizer=regularizers.l2(weight_decay))(x)
    x = BatchNormalization(momentum=0.9, epsilon=1e-5)(x)
    x = Activation('relu')(x)
    x = Conv2D(int(f2[0]), (1,1), strides=(1,1), padding='same',
               kernel_initializer="he_normal",kernel_regularizer=regularizers.l2(weight_decay))(x)
    x = BatchNormalization(momentum=0.9, epsilon=1e-5)(x)
    x = Activation('relu')(x)
    return x

其它部分的代码同mobilenet_slim
参数量如下(不变):

Total params: 3,250,058
Trainable params: 3,228,170
Non-trainable params: 21,888

  • mobilenet
    Total params: 3,250,058
  • mobilenet_n
    Total params: 3,250,058
  • mobilenet_slim
    Total params: 3,250,058

结果分析如下:
training accuracy 和 training loss
【Keras-MobileNet v1】CIFAR-10_第18张图片
【Keras-MobileNet v1】CIFAR-10_第19张图片
【Keras-MobileNet v1】CIFAR-10_第20张图片
mobilenet_slim 差不多
test accuracy 和 test loss
【Keras-MobileNet v1】CIFAR-10_第21张图片
【Keras-MobileNet v1】CIFAR-10_第22张图片
【Keras-MobileNet v1】CIFAR-10_第23张图片
…………
精度突破93%,略胜一筹

2.5 mobilenet_slim_n_thinner

在 2.4 小节的基础上,我们把下表中,红色框框部分去掉,也即 5x 的结构
【Keras-MobileNet v1】CIFAR-10_第24张图片
代码修改部分如下:
可以删掉相应结构的代码,也可以直接把函数定义部分的形参 shallow=TrueFalse 改为 True

def MobileNet(img_input,shallow=True, classes=10):
    """Instantiates the MobileNet.Network has two hyper-parameters
        which are the width of network (controlled by alpha)
        and input size.
        # Arguments
            alpha: optional parameter of the network to change the 
                width of model.
            shallow: optional parameter for making network smaller.
            classes: optional number of classes to classify images
                into.
    """
    # change stride
    x = Conv2D(int(32), (3,3), strides=(1,1), padding='same',
              kernel_initializer="he_normal",kernel_regularizer=regularizers.l2(weight_decay))(img_input)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = depthwise_separable(x,params=[(1,),(64,)])
    x = depthwise_separable(x,params=[(1,),(128,)])# change stride
    x = depthwise_separable(x,params=[(1,),(128,)])
    x = depthwise_separable(x,params=[(1,),(256,)])# change stride
    x = depthwise_separable(x,params=[(1,),(256,)])
    x = depthwise_separable(x,params=[(2,),(512,)])
    if not shallow:
        for _ in range(5):
            x = depthwise_separable(x,params=[(1,),(512,)])
    x = depthwise_separable(x,params=[(2,),(1024,)])
    x = depthwise_separable(x,params=[(1,),(1024,)])

    x = GlobalAveragePooling2D()(x)
    out = Dense(classes, activation='softmax')(x)
    return out

其它部分代码同 mobilenet_slim_n

参数量如下(减少):

Total params: 1,890,698
Trainable params: 1,879,050
Non-trainable params: 11,648

  • mobilenet
    Total params: 3,250,058
  • mobilenet_n
    Total params: 3,250,058
  • mobilenet_slim
    Total params: 3,250,058
  • mobilenet_slim_n
    Total params: 3,250,058

结果分析如下:
test accuracy 和 test loss
【Keras-MobileNet v1】CIFAR-10_第25张图片
速度大幅度提升,精度有所牺牲

2.6 mobilenet_slim_n_0.75 / 0.5

在 2.4 小节的基础上,加入论文中 width multiplier 的 hyper parameters,也即 α \alpha α
修改代码部分如下:

  • 设置 超参数(0.75 或者 0.5)
alpha = 0.75
  • 修改 depth-wise separable convolution
def depthwise_separable(x,params):
    # f1/f2 filter size, s1 stride of conv
    (s1,f2) = params
    x = DepthwiseConv2D((3,3),strides=(s1[0],s1[0]), padding='same',
                        depthwise_initializer="he_normal",depthwise_regularizer=regularizers.l2(weight_decay))(x)
    x = BatchNormalization(momentum=0.9, epsilon=1e-5)(x)
    x = Activation('relu')(x)
    x = Conv2D(int(alpha*f2[0]), (1,1), strides=(1,1), padding='same',
               kernel_initializer="he_normal",kernel_regularizer=regularizers.l2(weight_decay))(x)
    x = BatchNormalization(momentum=0.9, epsilon=1e-5)(x)
    x = Activation('relu')(x)
    return x
  • 修改网络结构的第一个卷积
    x = Conv2D(int(alpha*32), (3,3), strides=(1,1), padding='same',
              kernel_initializer="he_normal",kernel_regularizer=regularizers.l2(weight_decay))(img_input)

其它部分代码同 mobilenet_slim_n

参数量如下(减少,和 mobilnet_slim_n_thinner 的参数量相仿):

  • mobilenet
    Total params: 3,250,058
  • mobilenet_n
    Total params: 3,250,058
  • mobilenet_slim
    Total params: 3,250,058
  • mobilenet_slim_n
    Total params: 3,250,058
  • mobilnet_slim_n_thinner
    Total params: 1,890,698
  • mobilnet_slim_n_0.75
    Total params: 1,848,874
  • mobilnet_slim_n_0.5
    Total params: 840,138

结果分析如下:
test accuracy 和 test loss
【Keras-MobileNet v1】CIFAR-10_第26张图片
【Keras-MobileNet v1】CIFAR-10_第27张图片
【Keras-MobileNet v1】CIFAR-10_第28张图片
可以看到,0.5 和 thinner 精度和速度相仿,这一小节也算是 trade-off latent 和 accuracy 吧!

论文中,对比了 0.75 Mobilenet 与 Shallow Mobilenet(也就是我们这里的2.5小节) 在 ImageNet 上的表现
【Keras-MobileNet v1】CIFAR-10_第29张图片

3 总结

精度最高的是 mobilenet_slim_n
模型大小
【Keras-MobileNet v1】CIFAR-10_第30张图片
参数量

  • mobilenet
    Total params: 3,250,058
  • mobilenet_n
    Total params: 3,250,058
  • mobilenet_slim
    Total params: 3,250,058
  • mobilenet_slim_n
    Total params: 3,250,058
  • mobilnet_slim_n_thinner
    Total params: 1,890,698
  • mobilnet_slim_n_0.75
    Total params: 1,848,874
  • mobilnet_slim_n_0.5
    Total params: 840,138

你可能感兴趣的:(TensroFlow,/,Keras)