为什么使用齐次坐标

按照通常使用的数学知识,二维平面上一个点可以用它在X、Y方向上的坐标来标示为 P(x,y),但是在图形学中偏偏要‘画蛇添足’的使用齐次坐标,这样我们必须使用一个三维向量来表示一个二维点即P(x,y,w),最后一个w就是那个‘足’。
why?
首先想像有个绝对不变的坐标系,记为W,然后以W为参照,建立两个坐标系O1和O2, O1的原点在W的(1,1)处,O2的原点在W的(2,2)处。
那么W中的一个点P(x,y)在O1中将变为P(x-1,y-1),在O2中将是P(x-2, y-2),这样同一个点P在不同的坐标系下就具有了不同的表示。这会产生一个问题:显然,P点在二维空间的位置是唯一的,是与坐标系无关的,而不同坐标系下的表示看上去体现不了这种无关性。

The Key
我们使用的是坐标系这样一个概念,坐标系忽略了坐标原点所具有的重要意义:正是原点标示了该坐标系处于哪个参照位置。如果用矩阵来表示一个二维坐标系,将会是如下形式:
|1 0|
|0 1| 
其中(1 0)T表示一个基矢量,(0 1)T表示另一个基矢量,它们互相垂直,因此能利用它们标记整个二维空间。
(x, y)|1 0| = (x, y)
 |0 1|
这就是二维坐标的实际意义。
现在考虑将坐标原点(a,b)也引入到这个矩阵表示中来:
|1 0 |
|0 1 |
|a b |
我们用这个矩阵可以表示二维空间中任意位置的一个坐标系,当然,这个坐标系的基矢量可以不为(0 1)T和(1 0)T,为了和坐标系区分,我们称这种新表示为标架表示。
好,问题来了,如果我们仍然用(x y)来表示点P,那么根据矩阵的乘法规则,我们无法完成其乘法:mx N 的矩阵只能和 N xk的矩阵相乘。解决的办法就是: 给P点添一个尾巴,这个尾巴通常为1:P(x y 1),这就是P的齐次坐标,利用新的齐次坐标和矩阵相乘得到的结果为:
(x+a, y+b),这样同一个点在不同标架下的不同表示最终会得到同一个计算结果,它反映了这样一个事实:同一个点在不同标架下的不同表示其实是等价的,这一点恰恰是使用坐标系无法体现出来的。
显然上面那个 3x2的矩阵和P的齐次表示相乘得到的不是齐次坐标,所以应该将它扩充成3x3的方阵:
|1 0 0|
|0 1 0|
|a b 1|
经过扩充以后的新矩阵具有一些有趣的特性:利用它可以非常轻松的实现平移、旋转以及缩放和剪切变换。

你可能感兴趣的:(图形学)