- 机器学习算法实现刑事案件文本分类
deleteeee
机器学习分类人工智能自然语言处理pythonsklearnscikit-learn
一、背景随着我国法制建设不断健全,法规日趋完善,人们的法律意识也越来越强。当前,随着越来越多的法律文本公开,为犯罪案件审理这个方面的挖掘积累了大量的文本内容。因此,通过收集法律与犯罪领域文本,构建起司法领域语料库,使用自然语言处理技术进行挖掘,实现文本分类,并利用机器学习等技术实现对法律案件的预测具有重要意义。文本分类算法,是计算机对文本集合按照事先定义好的类别体系进行自动分类标记的技术,它根据一
- 机器学习大作业--Python城市空气质量的分析与预测
黎明的前夜
机器学习实验和大作业课程设计机器学习支持向量机lstm决策树线性回归
需要完整项目源码和论文报告可以私信我或加QQ1878073201机器学习大作业–基于机器学习算法、KNN、SVM、LSTM、决策树、随机森林、线性回归分析对空气质量的分类、识别和预测:本文针对江西省南昌市2022年空气质量问题,采用各种机器学习算法实现其分类、知识、预测等。文中采用了基于SVM的图像分类或归类、深度学习模型LSTM、决策树、随机森林和线性回归分析等方法,对南昌市空气质量进行了研究和
- ML:使用线性回归实现多项式拟合
ACphart
介绍注意:这里的代码都是在JupyterNotebook中运行,原始的.ipynb文件可以在我的GitHub主页上下载https://github.com/acphart/Hand_on_ML_Algorithm其中的LinearRegression_multi_polynomal.ipynb,直接在JupyterNotebook中打开运行即可,里面还有其他的机器学习算法实现,喜欢可以顺便给个st
- [网络安全提高篇] 一二三.恶意样本分类之基于API序列和深度学习的恶意家族分类详解
Eastmount
网络安全自学篇web安全深度学习恶意样本分类API序列CNN
终于忙完初稿,开心地写一篇博客。“网络安全提高班”新的100篇文章即将开启,包括Web渗透、内网渗透、靶场搭建、CVE复现、攻击溯源、实战及CTF总结,它将更加聚焦,更加深入,也是作者的慢慢成长史。换专业确实挺难的,Web渗透也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~前文详细介绍如何学习提取的API序列特征,并构建机器学习算法实现
- 【R语言因果推断】0-1:因果推断概述
JOJO数据科学
R语言数据科学r语言
专栏介绍个人主页:JOJO数据科学个人介绍:统计学top3高校统计学硕士在读如果文章对你有帮助,欢迎✌关注、点赞、✌收藏、订阅专栏✨本文收录于【R语言数据科学】本系列主要介绍R语言在数据科学领域的应用包括:R语言编程基础、R语言可视化、R语言进行数据操作、R语言建模、R语言机器学习算法实现、R语言因果推断、R语言统计理论方法实现。本系列会坚持完成下去,请大家多多关注点赞支持,一起学习~,尽量坚持每
- 经典机器学习算法的极简实现(Python+NumPy)
木亦有知
大三的时候曾花两个星期学习了几个经典的机器学习算法,学习方法主要是白天参考《统计学习方法》推导公式,晚上利用公式编写实现。在参考GitHub上算法实现时,我发现其中大多数都比较繁杂冗长,很难体现出算法的核心思想。因此我特地找出了以前的机器学习算法实现,在修改整理后分享给大家(GitHub地址)。所有算法的实现都没有使用其他机器学习库。希望可以帮助大家对机器学习算法及其本质原理有个基本的了解,但并不
- 机器学习算法实现(基于numpy)
Jiawen9
#《机器学习代码实现》学习笔记机器学习算法numpypython人工智能数据挖掘
《机器学习公式推导与代码实现》学习笔记,记录一下自己的学习过程,详细的内容请大家购买作者的书籍查阅。这篇博客是将笔者边学边刷《机器学习公式推导与代码实现》的模型跟代码记录下来,部分地方结合自己的思考对原作者的代码有一定的改动,这些博客主要是动手去实现一些模型,感受机器学习各个模型能解决的问题以及收敛后的效果,所以对相关理论没有过于深入。一.监督学习模型chapter3-对数几率回归logistic
- 数据科学软件likeweka
哈都婆
机器学习hadoop搭建管理教程sql数据库python数据分析信息可视化
题目:项目完成人:202160362韩东平(组长)、202160362唐骏(组员)语言及安装包:本软件基于python语言,在Pycharm/Jupyter中完成脚本开发;需安装PyQt5包、PIL、sklearn、matplotlib包,软件才能顺利运行本程序。一、功能介绍本软件是一个数据科学软件,旨在提供数据处理、分析、机器学习算法实现、和可视化的功能。以下是软件的主要功能:1.数据导入:支持
- ML:自己动手实现单变量线性回归算法
ACphart
介绍注意:这里的代码都是在JupyterNotebook中运行,原始的.ipynb文件可以在我的GitHub主页上下载https://github.com/acphart/Hand_on_ML_Algorithm其中的LinearRegression_single_variabel.ipynb,直接在JupyterNotebook中打开运行即可,里面还有其他的机器学习算法实现,喜欢可以顺便给个st
- 【机器学习基础】数学推导+纯Python实现机器学习算法25:CatBoost
风度78
算法人工智能机器学习深度学习数据分析
Python机器学习算法实现Author:louwillMachineLearningLab本文介绍GBDT系列的最后一个强大的工程实现模型——CatBoost。CatBoost与XGBoost、LightGBM并称为GBDT框架下三大主流模型。CatBoost是俄罗斯搜索巨头公司Yandex于2017年开源出来的一款GBDT计算框架,因其能够高效处理数据中的类别特征而取名为CatBoost(Ca
- 【机器学习基础】数学推导+纯Python实现机器学习算法27:EM算法
风度78
算法python机器学习人工智能深度学习
Python机器学习算法实现Author:louwillMachineLearningLab从本篇开始,整个机器学习系列还剩下最后三篇涉及导概率模型的文章,分别是EM算法、CRF条件随机场和HMM隐马尔科夫模型。本文主要讲解一下EM(Expectionmaximization),即期望最大化算法。EM算法是一种用于包含隐变量概率模型参数的极大似然估计方法,所以本文从极大似然方法说起,然后推广到EM
- 【机器学习基础】数学推导+纯Python实现机器学习算法24:HMM隐马尔可夫模型
风度78
算法python机器学习深度学习人工智能
Python机器学习算法实现Author:louwillMachineLearningLabHMM(HiddenMarkovModel)也就是隐马尔可夫模型,是一种由隐藏的马尔可夫链随机生成观测序列的过程,是另一种经典的概率图模型。本文在阐述HMM的基本定义和相关概念的基础上,引申出HMM的三个重要问题:估计算法、学习算法和预测算法问题,并给出相应的代码实现方式。HMM的定义与相关概念HMM是关于
- R语言caret机器学习(一)数据可视化:绘制特征变量图
JOJO数据科学
R语言数据科学r语言机器学习数据可视化
【R语言数据科学】个人主页:JOJO数据科学个人介绍:统计学top3高校统计学硕士在读如果文章对你有帮助,欢迎✌关注、点赞、✌收藏、订阅专栏✨本文收录于【R语言数据科学】本系列主要介绍R语言在数据科学领域的应用包括:R语言编程基础、R语言可视化、R语言进行数据操作、R语言建模、R语言机器学习算法实现、R语言统计理论方法实现。本系列会坚持完成下去,请大家多多关注点赞支持,一起学习~,尽量坚持每周持续
- 【机器学习基础】数学推导+纯Python实现机器学习算法28:CRF条件随机场
风度78
算法机器学习人工智能深度学习python
Python机器学习算法实现Author:louwillMachineLearningLab本文我们来看一下条件随机场(ConditionalRandomField,CRF)模型。作为概率图模型的经典代表之一,CRF理解起来并不容易。究其缘由,还是在于CRF模型过于抽象,大量的概率公式放在一起时常让人犯晕。还有就是即使理解了公式,很多朋友也迷惑CRF具体用在什么地方。所以在本文的开头,我们先具体化
- 机器学习:公式推导与代码实现全书代码!
机器学习与AI生成创作
算法机器学习人工智能pythongithub
今年新书《机器学习:公式推导与代码实现》目前在印刷中,本月底即将出版,现开源本书全部章节代码。全书总共6大部分26个章节,包括入门、监督学习单模型、监督学习集成模型、无监督学习模型、概率模型和总结。书预计下半年可出版,全书代码仓库经过修改和整理之后先提前分享给各位读者。仓库的一些机器学习算法实现借鉴了一些GitHub上一些优秀的仓库代码,整体上力争做到简洁和基于NumPy搭建。每一个机器学习算法都
- 机器学习模型的超参数优化
喜欢打酱油的老鸟
人工智能
作者|deephub责编|王晓曼出品|CSDN博客头图|CSDN付费下载自东方IC引言模型优化是机器学习算法实现中最困难的挑战之一。机器学习和深度学习理论的所有分支都致力于模型的优化。机器学习中的超参数优化旨在寻找使得机器学习算法在验证数据集上表现性能最佳的超参数。超参数与一般模型参数不同,超参数是在训练前提前设置的。举例来说,随机森林算法中树的数量就是一个超参数,而神经网络中的权值则不是超参数。
- 模型效果差?我建议你掌握这些机器学习模型的超参数优化方法
Python数据挖掘
机器学习python超参数
模型优化是机器学习算法实现中最困难的挑战之一。机器学习和深度学习理论的所有分支都致力于模型的优化。机器学习中的超参数优化旨在寻找使得机器学习算法在验证数据集上表现性能最佳的超参数。超参数与一般模型参数不同,超参数是在训练前提前设置的。举例来说,随机森林算法中树的数量就是一个超参数,而神经网络中的权值则不是超参数。其它超参数有:神经网络训练中的学习率支持向量机中的ccc参数和γ\gammaγ参数k近
- python识别手写数字_不用框架,Python识别手写数字
weixin_39691748
python识别手写数字
有一句话说得好,要有造轮子的技术和用轮子的觉悟近年来人工智能火的不行,大家都争相学习机器学习,作为学习大军中的一员,我觉得最好的学习方法就是用python把机器学习算法实现一遍,下面我介绍一下用逻辑回归实现手写数字的识别。逻辑回归知识点回顾线性回归简单又易用,可以进行值的预测,但是不擅长分类。在此基础上进行延伸,把预测的结果和概率结合起来就可以做分类器了,比如预测值大于0.5,则归为1类,否则就归
- 【机器学习基础】数学推导+纯Python实现机器学习算法17:XGBoost
风度78
Python机器学习算法实现Author:louwillMachineLearningLab自从陈天奇于2015年提出XGBoost以来,该模型就一直在各大数据竞赛中当作大杀器被频繁祭出。速度快、效果好是XGBoost的最大优点。XGBoost与GBDT同出一脉,都属于boosting集成学习算法,但XGBoost相较于GBDT要青出于蓝而胜于蓝。XGBoost的全程为eXtremeGradien
- 数学推导+纯Python实现马尔可夫链蒙特卡洛
文文学霸
Python机器学习算法实现Author:louwillMachineLearningLab蒙特卡洛(MonteCarlo,MC)方法作为一种统计模拟和近似计算方法,是一种通过对概率模型随机抽样进行近似数值计算的方法。马尔可夫链(MarkovChain,MC)则是一种具备马尔可夫性的随机序列。将二者结合起来便有了马尔可夫链蒙特卡洛方法(MarkovChainMonteCarlo,MCMC),即是以
- 深度学习+迁移学习资料整理
Marko编程
python深度学习机器学习人工智能神经网络
文章目录前言一、Python机器学习1.1sklearn库的学习二、深度学习框架2.1CNN三、迁移学习3.1迁移学习代码四、工具整理前言对在个人学习过程中收集到的资料进行整理,仅供参考,持续更新(收藏=学会)。一、Python机器学习1.1sklearn库的学习官方文档地址:官方文档跳转使用python中的sklearn扩展库,可以利用其提供的机器学习算法实现特征子集的筛选学习参考链接:1.Py
- 【机器学习算法实现】主成分分析(PCA)——基于python+numpy
ChuShengWHU
机器学习pythonNumpy
【机器学习算法实现】主成分分析(PCA)——基于python+numpy@author:wepon@blog:http://blog.csdn.net/u012162613/article/details/421773271、PCA算法介绍主成分分析(PrincipalComponentsAnalysis),简称PCA,是一种数据降维技术,用于数据预处理。一般我们获取的原始数据维度都很高,比如10
- 使用机器学习算法实现单细胞测序数据的降维及聚类(一)
今天练习代码了吗
机器学习--单细胞聚类
主要代码参考于此,感谢b站大学主要代码参考于此,感谢GitHub老师本篇主要记录一下几种常用的降维算法数据集和文中代码可从我的gitee中中获取数据是darmanis数据集,包括466个细胞2000个高表达量基因,分为九种类型的细胞集群。数据部分截图:其中行为基因列为细胞,每个数据表示基因在细胞中的表达量。1.PCAimportnumpyasnpimportmatplotlib.pyplotasp
- 【R语言数据科学】:变量选择(三)主成分回归和偏最小二乘回归
JOJO数据科学
R语言数据科学r语言回归开发语言
变量选择(三)主成分回归和偏最小二乘回归个人主页:JOJO数据科学个人介绍:统计学top3高校统计学硕士在读如果文章对你有帮助,欢迎✌关注、点赞、✌收藏、订阅专栏✨本文收录于【R语言数据科学】本系列主要介绍R语言在数据科学领域的应用包括:R语言编程基础、R语言可视化、R语言进行数据操作、R语言建模、R语言机器学习算法实现、R语言统计理论方法实现。本系列会坚持完成下去,请大家多多关注点赞支持,一起学
- 【机器学习基础】数学推导+纯Python实现机器学习算法12:贝叶斯网络
风度78
Python机器学习算法实现Author:louwill在上一讲中,我们讲到了经典的朴素贝叶斯算法。朴素贝叶斯的一大特点就是特征的条件独立假设,但在现实情况下,条件独立这个假设通常过于严格,在实际中很难成立。特征之间的相关性限制了朴素贝叶斯的性能,所以本节笔者将继续介绍一种放宽了条件独立假设的贝叶斯算法——贝叶斯网络(BayesianNetwork)。贝叶斯网络的直观例子先以一个例子进行引入。假设
- 【机器学习基础】数学推导+纯Python实现机器学习算法18:奇异值分解SVD
风度78
Python机器学习算法实现Author:louwillMachineLearningLab奇异值分解(SingularValueDecomposition,SVD)作为一种常用的矩阵分解和数据降维方法,在机器学习中也得到了广泛的应用,比如自然语言处理中的SVD词向量和潜在语义索引,推荐系统中的特征分解,SVD用于PCA降维以及图像去噪与压缩等。作为一个基础算法,我们有必要将其单独拎出来在机器学习
- 纯Python实现机器学习算法:贝叶斯网络
銨靜菂等芐紶
PythonPython贝叶斯网络
Python机器学习算法实现在上一讲中,我们讲到了经典的朴素贝叶斯算法。朴素贝叶斯的一大特点就是特征的条件独立假设,但在现实情况下,条件独立这个假设通常过于严格,在实际中很难成立。特征之间的相关性限制了朴素贝叶斯的性能,所以本节笔者将继续介绍一种放宽了条件独立假设的贝叶斯算法——贝叶斯网络(BayesianNetwork)。贝叶斯网络的直观例子先以一个例子进行引入。假设我们需要通过头像真实性、粉丝
- 【机器学习基础】数学推导+纯Python实现机器学习算法30:系列总结与感悟
风度78
算法人工智能机器学习深度学习xhtml
Python机器学习算法实现Author:louwillMachineLearningLab终于到了最后的总结。从第一篇线性回归的文章开始到现在,已经接近有两年的时间了。当然,也不是纯写这30篇文章用了这么长时间,在第14篇Ridge回归之后中间断更了10个多月,好在今年抽出时间把全部补齐了。一点总结整个系列对常用的、主流的机器学习模型与算法进行了梳理,主题只有两个,一个是数学推导,一个手写实现。
- gridsearchcv参数_机器学习模型的超参数优化
weixin_39897218
gridsearchcv参数
引言模型优化是机器学习算法实现中最困难的挑战之一。机器学习和深度学习理论的所有分支都致力于模型的优化。机器学习中的超参数优化旨在寻找使得机器学习算法在验证数据集上表现性能最佳的超参数。超参数与一般模型参数不同,超参数是在训练前提前设置的。举例来说,随机森林算法中树的数量就是一个超参数,而神经网络中的权值则不是超参数。其它超参数有:神经网络训练中的学习率支持向量机中的参数和参数k近邻算法中的参数……
- randomforestregressor参数_机器学习中的超参数优化
weixin_39601194
机器学习中val
引言模型优化是机器学习算法实现中最困难的挑战之一。机器学习和深度学习理论的所有分支都致力于模型的优化。机器学习中的超参数优化旨在寻找使得机器学习算法在验证数据集上表现性能最佳的超参数。超参数与一般模型参数不同,超参数是在训练前提前设置的。举例来说,随机森林算法中树的数量就是一个超参数,而神经网络中的权值则不是超参数。其它超参数有:神经网络训练中的学习率支持向量机中的ccc参数和γgammaγ参数k
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement