泊松分布

以前觉得概率论与数理统计这门课很难学,概念太抽象了-_-#

现在回炉再造试试



泊松分布

它是一种常见的离散概率分布,泊松分布概率函数如下:

泊松分布_第1张图片
图片发自App

其中,参数λ是单位事件(或单位面积)内随机事件的平均发生率。

举几个例子,日常生活中,大量事件是有固定频率的。比如:

某医院平均每小时出生3个婴儿

某公司平均每10分钟接到1个电话

某超市平均每天销售4包xx牌奶粉

某网站平均每分钟有2次访问

它们的特点就是,我们可以预估这些事件的总数,但是没法知道具体的发生时间。

(是不是感觉上要好理解点了……)

OK,我们再把时间这个参数也拉进来,于是概率函数变成了这样:

泊松分布_第2张图片
图片发自App

t表示时间,比如1小时、2分钟……

再来看看上面举的例子“某医院平均每小时出生3个婴儿”,则t=1,n=3,概率表示为P(N(1)=3)……而右边的λ,则表示事件的频率……

那么,我们来看看接下来可能的概率:

①接下来两个小时,一个婴儿都不出生的概率

泊松分布_第3张图片
图片发自App

概率为0.25%,基本上不可能发生

②接下来一小时,至少出生两个婴儿的概率是多少?

P(N(1)≥2) = 1-P(N(1)=1)-P(N(1)=0)

泊松分布_第4张图片
图片发自App

泊松分布在生产中解决的都是“为宜”的问题,即投入产出的权衡。在实际应用中,还可能会用到“累积概率”,即可以先求出k所对应的各个概率的大小,再计算累积概率的大小。

(累积概率的例子可自行百度)

可以看到一个现象,k每增加1,在k小于λ的时候,累积函数增加是很快的,而且每次增加的量比上一次增加的要多; 而k在越过λ之后,虽然开始还在增加,但每次增加的量比上一次增加的要少,而且会越来越少……



(其实泊松分布还是挺有意思的)

你可能感兴趣的:(泊松分布)