由于学习多变量微积分和电磁学时没有意识到数学基础的重要性,我对于矢量代数的理解一直不够透彻。近日需要处理一些有关波导的问题,但是我由于一些概念没有搞清楚,在矢量方程的变换上吃了些亏。因此,在此我总结一下有关矢量代数的几个概念。
以下内容参考教材以及维基百科。
一个多变量函数的偏导数就是它在其它变量保持不变时,关于某一个变量的导数。它的记法有很多,两个变量的函数的偏导数用数学方式表示就是
f x ′ ( x , y ) = ∂ f ∂ x = lim Δ x → 0 f ( x + Δ x , y ) − f ( x , y ) Δ x f'_x (x, y) = \frac{\partial f}{\partial x} = \lim _{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} fx′(x,y)=∂x∂f=Δx→0limΔxf(x+Δx,y)−f(x,y)
一个多变量函数的方向导数就是它在某一点上沿某一方向的瞬时变化率。对于多变量标量函数
f ( x ⃗ ) = f ( x 1 , x 2 , … , x n ) f(\vec{x}) = f(x_1, x_2, \ldots, x_n) f(x)=f(x1,x2,…,xn)
在方向
v ⃗ = ( v 1 , v 2 , … , v n ) \vec{v} = (v_1, v_2, \ldots, v_n) v=(v1,v2,…,vn)
上的方向导数定义为
∇ v ⃗ f ( x ⃗ ) = ∂ f ∂ v ⃗ = lim h → 0 f ( x ⃗ + h v ⃗ ) − f ( x ⃗ ) h \nabla _{\vec{v}} f(\vec{x}) = \frac{\partial f}{\partial \vec{v}} = \lim _{h \to 0} \frac{f(\vec{x} + h \vec{v}) - f(\vec{x})}{h} ∇vf(x)=∂v∂f=h→0limhf(x+hv)−f(x)
标量场的梯度是矢量。标量场的梯度指向该场增长最快的方向,梯度的长度是这个最大的变化率。在三维笛卡尔坐标系下,梯度是(我习惯在 Nabla 符号上加箭头,表示这是个矢量)
∇ ⃗ f = ∂ f ∂ x i ⃗ + ∂ f ∂ y j ⃗ + ∂ f ∂ z k ⃗ \vec{\nabla} f = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z} \vec{k} ∇f=∂x∂fi+∂y∂fj+∂z∂fk
在柱坐标下,梯度是
∇ ⃗ f = ∂ f ∂ ρ e ⃗ ρ + 1 ρ ∂ f ∂ φ e ⃗ φ + ∂ f ∂ z e ⃗ z \vec{\nabla} f = \frac{\partial f}{\partial \rho} \vec{e} _{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \varphi} \vec{e} _{\varphi} + \frac{\partial f}{\partial z} \vec{e} _{z} ∇f=∂ρ∂feρ+ρ1∂φ∂feφ+∂z∂fez
在球坐标下,梯度是
∇ ⃗ f = ∂ f ∂ r e ⃗ r + 1 r ∂ f ∂ θ e ⃗ θ + 1 r sin θ ∂ f ∂ φ e ⃗ φ \vec{\nabla} f = \frac{\partial f}{\partial r} \vec{e} _{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{e} _{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \vec{e} _{\varphi} ∇f=∂r∂fer+r1∂θ∂feθ+rsinθ1∂φ∂feφ
散度是标量,描述三维矢量场在一点处汇聚或发散的程度。在三维笛卡尔坐标系下,散度是
d i v F ⃗ = ∇ ⃗ ⋅ F ⃗ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) ⋅ ( U , V , W ) = ∂ U ∂ x + ∂ V ∂ y + ∂ W ∂ z div \vec{F} = \vec{\nabla} \cdot \vec{F} = \left( \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot (U, V, W) = \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} divF=∇⋅F=(∂x∂,∂y∂,∂z∂)⋅(U,V,W)=∂x∂U+∂y∂V+∂z∂W
在柱坐标下,散度是
d i v F ⃗ = ∇ ⃗ ⋅ F ⃗ = 1 r ∂ ∂ r ( r F r ) + 1 r ∂ F θ ∂ θ + ∂ F z ∂ z div \vec{F} = \vec{\nabla} \cdot \vec{F} = \frac1r \frac{\partial}{\partial r}(r F_r) + \frac1r \frac{\partial F_{\theta}}{\partial \theta} + \frac{\partial F_z}{\partial z} divF=∇⋅F=r1∂r∂(rFr)+r1∂θ∂Fθ+∂z∂Fz
在球坐标下,散度是
d i v F ⃗ = ∇ ⃗ ⋅ F ⃗ = 1 r 2 ∂ ∂ r ( r 2 F r ) + 1 r sin θ ∂ ∂ θ ( sin θ F θ ) + 1 r sin θ ∂ F φ ∂ φ div \vec{F} = \vec{\nabla} \cdot \vec{F} = \frac1{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac1{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta F_{\theta}) + \frac1{r \sin \theta} \frac{\partial F _{\varphi}}{\partial \varphi} divF=∇⋅F=r21∂r∂(r2Fr)+rsinθ1∂θ∂(sinθFθ)+rsinθ1∂φ∂Fφ
旋度是矢量,描述三维矢量场在一点处的旋转程度。在三维笛卡尔坐标系下,旋度用行列式表示最为方便
c u r l F ⃗ = ∇ ⃗ × F ⃗ = ∣ i ⃗ j ⃗ k ⃗ ∂ ∂ x ∂ ∂ y ∂ ∂ z F x F y F z ∣ curl \vec{F} = \vec{\nabla} \times \vec{F} = \left| \begin{matrix} \vec{i} & \vec{j} & \vec{k} \\\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\\\ F_x & F_y & F_z \\\\ \end{matrix} \right| curlF=∇×F=∣∣∣∣∣∣∣∣∣∣∣∣i∂x∂Fxj∂y∂Fyk∂z∂Fz∣∣∣∣∣∣∣∣∣∣∣∣
∇ \nabla ∇这个符号被称为 Del 或 Nabla 算符。我们可以看到上面几个概念里大量用到这个符号。在笛卡尔坐标系下,Nabla 算符可以表示为一个矢量
∇ ⃗ = ∑ i = 1 n ∂ ∂ x i = ( ∂ ∂ x 1 , … , ∂ ∂ x n ) \vec{\nabla} = \sum_{i = 1}{n} \frac{\partial}{\partial x_i} = \left( \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right) ∇=i=1∑n∂xi∂=(∂x1∂,…,∂xn∂)
使用这个算符,我们可以方便地表示梯度、散度、旋度为
∇ ⃗ f ∇ ⃗ ⋅ F ⃗ ∇ ⃗ × F ⃗ \vec{\nabla} f \\\\ \vec{\nabla} \cdot \vec{F} \\\\ \vec{\nabla} \times \vec{F} ∇f∇⋅F∇×F
方向导数也可以表示为
v ⃗ ⋅ ∇ ⃗ f \vec{v} \cdot \vec{\nabla} f v⋅∇f
Nabla 算符可以让这些运算规则变得更容易理解
∇ ⃗ ( f g ) = f ∇ ⃗ g + g ∇ ⃗ f ∇ ⃗ ( u ⃗ ⋅ v ⃗ ) = u ⃗ × ( ∇ ⃗ × v ⃗ ) + v ⃗ × ( ∇ ⃗ × u ⃗ ) + ( u ⃗ ⋅ ∇ ⃗ ) ⋅ v ⃗ + ( v ⃗ ⋅ ∇ ⃗ ) ⋅ u ⃗ ∇ ⃗ ⋅ ( f v ⃗ ) = f ( ∇ ⋅ v ⃗ ) + v ⃗ ⋅ ( ∇ ⃗ f ) ∇ ⃗ ⋅ ( u ⃗ × v ⃗ ) = v ⃗ ⋅ ( ∇ ⃗ × v ⃗ ) − u ⃗ ⋅ ( ∇ ⃗ × v ⃗ ) ∇ ⃗ × ( f v ⃗ ) = ∇ ⃗ f × v ⃗ + f ( ∇ ⃗ × v ⃗ ) ∇ ⃗ × ( u ⃗ × v ⃗ ) = u ⃗ ( ∇ ⃗ ⋅ v ⃗ ) − v ⃗ ( ∇ ⃗ ⋅ u ⃗ ) + ( v ⃗ ⋅ ∇ ) u ⃗ − ( u ⃗ ⋅ ∇ ) v ⃗ \vec{\nabla} (fg) = f \vec{\nabla} g + g \vec{\nabla} f \\\\ \vec{\nabla} (\vec{u} \cdot \vec{v}) = \vec{u} \times (\vec{\nabla} \times \vec{v}) + \vec{v} \times (\vec{\nabla} \times \vec{u}) + (\vec{u} \cdot \vec{\nabla}) \cdot \vec{v} + (\vec{v} \cdot \vec{\nabla}) \cdot \vec{u} \\\\ \vec{\nabla} \cdot (f \vec{v}) = f (\nabla \cdot \vec{v}) + \vec{v} \cdot (\vec{\nabla} f) \\\\ \vec{\nabla} \cdot (\vec{u} \times \vec{v}) = \vec{v} \cdot (\vec{\nabla} \times \vec{v}) - \vec{u} \cdot (\vec{\nabla} \times \vec{v} ) \\\\ \vec{\nabla} \times (f \vec{v}) = \vec{\nabla} f \times \vec{v} + f (\vec{\nabla} \times \vec{v}) \\\\ \vec{\nabla} \times (\vec{u} \times \vec{v}) = \vec{u} (\vec{\nabla} \cdot \vec{v}) - \vec{v} (\vec{\nabla} \cdot \vec{u}) + (\vec{v} \cdot \nabla) \vec{u} - (\vec{u} \cdot \nabla) \vec{v} ∇(fg)=f∇g+g∇f∇(u⋅v)=u×(∇×v)+v×(∇×u)+(u⋅∇)⋅v+(v⋅∇)⋅u∇⋅(fv)=f(∇⋅v)+v⋅(∇f)∇⋅(u×v)=v⋅(∇×v)−u⋅(∇×v)∇×(fv)=∇f×v+f(∇×v)∇×(u×v)=u(∇⋅v)−v(∇⋅u)+(v⋅∇)u−(u⋅∇)v