- 【MATLAB源码-第139期】基于matlab的OFDM信号识别与相关参数的估计,高阶累量/小波算法调制识别,循环谱估计,带宽估计,载波数目估计等等。
Matlab程序猿
MATLAB通信原理OFDMmatlab开发语言信息与通信
操作环境:MATLAB2022a1、算法描述在现代无线通信系统中,正交频分复用(OFDM)因其高效的频谱利用率、强大的抗多径衰落能力以及灵活的带宽分配等优势,成为了一种非常重要的调制技术。然而,随着无线通信网络的复杂性增加,对OFDM信号的识别与参数估计提出了更高的要求。这不仅是为了提高通信质量和效率,也是为了确保网络的兼容性和安全性。因此,研究OFDM调制识别和参数估计算法具有重要的理论意义和实
- 现代信号处理——阵列信号处理(空域滤波原理及其算法)
清泉_流响
算法人工智能
一、阵列信号处理简介1、阵列信号处理的研究内容:检测、估计、滤波、成像等。2、阵列信号处理的研究对象:空间传播波携带信号(空域滤波)3、阵列信号处理方法:统计与自适应信号处理技术(如谱估计、最优与自适应、滤波)4、阵列信号处理的目的:①滤波:增强信噪比从而检测出目标;②获取信号特征:信号源数目;③传输方向(定位)及波形;④分辨多个信号源二、定义:传感器(天线)——能感应空间传播信号(电磁波)并且能
- 【通信系统】MIMO阵列信号来向DOA估计实现~含FOCUSS、OMP、贝叶斯学习(SBL)等稀疏重构法和常规、子空间法、空间平滑滤波法
sys_rst_n
仿真MIMO天线阵列波达方向DOA估计MATLAB仿真子空间算法压缩感知与稀疏恢复
MIMO阵列目标信号来向估计原理与实现~基于常规法、子空间变换法和稀疏恢复法写在最前前言空间谱估计的历史发展仿真原理离散时间阵列信号模型波束形成矩阵(完备字典)回波生成空间平滑滤波传统方法CBF~常规波束成型Capon~最小方差无失真响应法ML~最大似然估计法子空间方法MUSIC~多重信号分类法ESPRIT~旋转不变子空间法最小二乘准则总体最小二乘准则稀疏恢复方法FOCUSS~欠定系统聚焦法OMP
- 【脑电信号处理与特征提取】P6-张治国:频谱分析和时频分析
头发没了还会再长
信号处理EEGBCI脑机
频谱分析和时频分析背景脑电(尤其是静息态脑电)一般在频域进行分析,以刻画脑电信号的周期性特征,需要使用频谱分析来描述脑电信号功率沿频率的分布特征。任务态脑电实验中,任务可增强或减弱脑电在特定频段的节律幅度。事件相关的频谱变化被称为事件相关同步话/去同步化(ERS/ERD),通常表示为在时间-频率域中随时间变化的频谱功率,可以通过时频分析方法进行估计。频谱估计基本概念时间序列信号:例如在某通道连续记
- 现代信号处理实验:MATLAB实现LD算法进行AR估计
傻fufu滴人儿~
通信专业课程笔记信号处理matlab
MATLAB实现LD算法进行AR估计利用给定的一组样本数据估计一个平稳随机信号的功率谱密度称为功率谱估计,又称谱估计。谱估计的方法可以分成经典谱估计和现代谱估计。经典谱估计又称为非参数化的谱估计,分为直接法和间接法。直接法是指直接计算样本数据的傅里叶变换,即获取频谱,然后计算频谱和其共轭的乘积,就得到功率谱;间接法是指先计算样本数据的自相关函数,然后计算自相关函数的傅里叶变换,即得到功率谱。经典谱
- 现代信号处理——阵列信号处理(空域滤波原理及其算法)
秋山榛子
姓名:李泽铭学号:22011210787通信工程学院转载自https://blog.csdn.net/qq_42233059/article/details/127153565一、阵列信号处理简介1、阵列信号处理的研究内容:检测、估计、滤波、成像等。2、阵列信号处理的研究对象:空间传播波携带信号(空域滤波)3、阵列信号处理方法:统计与自适应信号处理技术(如谱估计、最优与自适应、滤波)4、阵列信号处
- MATLAB | 频谱分析算法 | Welch功率谱密度估计 | 附数据和出图代码 | 直接上手
Lwcah
MATLAB频谱分析算法matlab算法开发语言
有意向获取代码,请转文末观看代码获取方式~1基本定义Welch功率谱密度估计是一种基于信号分段平均的频谱估计方法,它可以对时域信号进行频谱分析,得到信号在不同频率上的能量分布。Welch功率谱密度估计在信号处理、通信、声学等领域得到广泛应用,相比于传统的频谱估计方法,它具有更好的计算效率和估计精度。Welch功率谱密度估计的步骤如下:给定一个长度为N的时域信号x(n)。将信号分成L个段,每段长度为
- 【老生谈算法】matlab实现频谱分析算法源码——频谱分析
阿里matlab建模师
matlab算法原理详解matlab算法开发语言
Matlab信号处理工具箱谱估计专题1、文档下载:本算法已经整理成文档如下,有需要的朋友可以点击进行下载序号文档(点击下载)本项目文档【老生谈算法】基于Matlab的相关频谱分析程序教程.doc2、算法详解:频谱分析Spectralestimation(谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。从
- 现代信号处理 matlab,matlab现代信号处理
花盆里的水
现代信号处理matlab
《现代信号处理》姓名:李建强学号:201512172087专业:电子科学与技术作业内容:在MATLAB平台上对一个特定的平稳随机信号进行经典功率谱估计和现代功率谱估计的......现代信号处理作业_物理_自然科学_专业资料。1.总结学过的滤波器设计方法,用matlab仿真例子分析不同设计方法的滤波器的性能及适应场合。答:1.1模拟低通滤波......现代信号处理_信息与通信_工程科技_专业资料。数
- 异常数据检测 | Python基于奇异谱分析时间序列插补预测
算法如诗
异常数据检测1024程序员节奇异谱分析
文章概述在时间序列分析中,「奇异谱分析」(「SSA」)是一种非参数谱估计方法。它结合了经典时间序列分析、多元统计、多元几何、动力系统和信号处理的元素。“奇异谱分析”这个名称涉及协方差矩阵的奇异值分解中的特征值谱,而不是直接涉及频域分解。SSA可以帮助分解时间序列分解为组件的总和,每个组件都有有意义的解释。如下图所示,奇异谱分析分解出来了趋势、变化和噪声三部分。SSA只考虑数据本身的特征,不考虑其他
- 异常数据检测 | Python奇异谱分析(SSA)数据缺失值插补
算法如诗
异常数据检测python奇异谱分析数据缺失值插补
文章目录文章概述模型描述源码分享参考资料文章概述长时序栅格数据经常会出现一些缺失值,会对后续的分析造成很大的不便。这便需要利用一些插值算法对这些缺失数据进行填补,奇异谱分析(SSA)便是常用的一种插值方法。模型描述在时间序列分析中,「奇异谱分析」(「SSA」)是一种非参数谱估计方法。它结合了经典时间序列分析、多元统计、多元几何、动力系统和信号处理的元素。源码分享SSA填补缺失值导入所需的第三方库i
- 第六章
啵啵能量星
六、气候序列周期提取方法近年来,提取时间序列振荡周期的统计方法十分迅速,从周期图,方差分析到连续谱分析。但是周期图不能处理周期得到位相的突变和周期的振幅变化;方差分析寻找隐含的一个周期效果好,但是对于其他周期则不明显。一、功率谱:是分以傅里叶变换为基础的频域分析方法,其意义为将时间序列的总能量分解到不同频率上的分量,根据不同频率的波的方差诊断出主要序列的周期。结果分析:将功率谱估计和标准谱会成曲线
- 长时序栅格数据缺失值插补
碧血洒长空
数据分析GIS数据处理python
长时序栅格数据经常会出现一些缺失值,会对后续的分析造成很大的不便。这便需要利用一些插值算法对这些缺失数据进行填补,奇异谱分析(SSA)便是常用的一种插值方法。更多内容可见公众号GeodataAnalysis。简介在时间序列分析中,「奇异谱分析」(「SSA」)是一种非参数谱估计方法。它结合了经典时间序列分析、多元统计、多元几何、动力系统和信号处理的元素。“奇异谱分析”这个名称涉及协方差矩阵的奇异值分
- 空间谱(Spatial Spectrum)
BiGmowang
算法
空间谱(SpatialSpectrum)是在DOA估计中使用的一种频谱表示方法,用于确定信号源的到达角度。空间谱是对接收阵列上接收到的信号进行空间处理后得到的频谱。在阵列信号处理中,接收到的信号通过阵列中的不同微phone进行采集,形成一个多通道的信号向量。通过对这些信号向量进行处理,可以得到信号的空间谱。常用的空间谱估计方法有以下几种:平均自协方差矩阵法(SampleCovarianceMatr
- 使用自功率谱、互功率谱估计滤波器幅频特性
伟大的歪比巴卜
Matlab信号处理信号处理数字信号处理随机信号处理
这段时间终于对工程中的随机信号的一般处理方式有点头绪了,功率谱密度估计是十分重要的方式之一,仍需继续深入细化相关内容。示例:使用自功率谱、互功率谱估计滤波器幅频特性,自己实现&Matlab自带函数实现。clc;clear;closeall;fs=44100;t=0:1/fs:1-1/fs;in=randn(size(t));winlen=1024;overlap=winlen/2;%滤波order
- 时间序列分析
取火者
趋势,平稳时间序列模型,非平稳时间序列模型,模型识别,模型估计,参数估计,模型诊断,预测,季节模型,时间序列回归模型,异方差时间序列模型,谱分析入门,谱估计,门限模型.
- PSD笔记
White__River
TMA笔记
在实际应用中,一个信号我们不可能获得无穷长时间段内的点,对于数字信号,只能通过采样的方式获得N个离散的点。上文提到,实际信号基本上是随机信号,由于不可能对所有点进行考察,我们也就不可能获得其精确的功率谱密度,而只能利用谱估计的方法来“估计”功率谱密度。谱估计有两种:经典谱估计和现代谱估计。经典谱估计是将采集数据外的未知数据假设为零;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法
- 现代法谱估计(2)Levinson-Durbin递推算法MATLAB及Python实现
流年亦梦
PythonMATLAB随机信号分析算法pythonmatlab信号处理
原理Levinson-Durbin递推算法是解YuleWalker方程的快速有效的算法,YuleWalker方程是p+1元线性方程组,它的一般解法是矩阵求逆或高斯消去法。通常都尽量避免使用矩阵求逆运算,因为它的运算量较大。如果利用高斯消去法直接求解线性方程组,其运算级约在p3数量级,而运用LevinsonDurbin算法,可以将运算量减少到p2。Levinson-Durbin算法是从一阶开始,由p
- 经典法谱估计(1)周期图法MATLAB及Python实现
流年亦梦
MATLABPython随机信号分析pythonmatlab信号处理
原理对于一个无限长序列x(n),其傅里叶变换DTFT(也可称作离散时间傅里叶变换)及其反变换的定义式为:但是在我们的分析处理过程中,只能分析处理离散化的信号,也即N点取样,对于一个长度为N的有限长序列x(n),其离散傅里叶变换及其反变换的定义式为:或者也可以写为式中x(n)和X(k)是一个有限长序列的离散傅里叶变换对。长度为N的有限长序列x(n),其离散傅里叶变换X(k)是一个有限长频域序列,其长
- 今天跑步创造了新的世界记录,配速碾压基普乔格,吊打苏炳添_2022年4月12日跑步日记
跑渣汤姆
跑步时间:2022年4月12日6:22跑步地点:马路上当时气温:十六度左右污染指数:109(空气质量轻微污染)跑步距离:12.70公里(数据错误)跑步时长:40分34秒平均配速:3分12秒数据错误平均心率:134次/分钟(数据错误)平均步频:189步/分钟平均步幅:165厘米数据错误跑完后手测即时心率23*6=138次/分六十秒后手测即时心率18*6=108次/分今天跑步没想到数据出错的离谱估计是
- 数字信号处理课程体系及内容
sunnny401
数字信号处理信号分析离散傅里叶变换及其快速算法(DFTFFT)随机信号谱估计(经典现代)信号多速率变换(抽取和内插)信号时频分析(STFTDWT)数字滤波器设计IIR滤波器设计(脉冲不变法和双线性变换法)FIR滤波器设计(窗口法,频率取样法和优化法)数字滤波器的结构(直接型级联型并联型格型)数字滤波器软硬件实施及有限字长效应应用离散系统处理连续信号信号抽样速率转换小波在信号去噪和压缩DFT在信号谱
- 脑电信号处理与特征提取——5.频谱分析和时频分析(张治国)
我行我素,向往自由
EEG频谱分析和时频分析脑电信号处理与特征提取
目录五、频谱分析和时频分析5.1频谱估计5.1.1基本概念5.1.2频谱估计方法:周期图5.1.3频谱估计方法:Welch法5.1.4频谱估计方法的比较5.1.5频谱特征提取5.2时频分析5.2.1短时傅里叶变换5.2.2连续小波变换5.3事件相关同步化/去同步化五、频谱分析和时频分析静息态脑电:没有刺激的情况下。任务态脑电:有刺激、任务。频谱分析:不包含时间信息。时频分析:时间+频率联合的方式。
- 雷达基础算法
无损检测小白白
雷达基础知识matlab算法信号处理信息与通信
目录雷达的测角算法MUSIC原理是什么雷达中的算法快速傅里叶变换-二维多重信号分类原理是什么雷达中的三维快速傅里叶变换原理是什么DOA估计方法中的DBF原理是什么雷达的测角算法MUSIC原理是什么MUSIC(MUltipleSIgnalClassification)算法是一种高分辨率的频谱估计方法,可以用于雷达中的角度估计。其基本原理是将接收到的信号进行空间谱分析,从而估计出信号的方向(或角度)信
- 第五章 功率谱估计 笔记
wangs7_
随机信号分析算法
第五章功率谱估计文章目录第五章功率谱估计5.1引言5.2经典估计方法5.2.1相关图法(自相关函数估计)5.2.2周期图法5.3谱估计的参数化模型方法5.4自回归(AR)模型方法5.4.1AR模型的Yule-Walker方法5.4.2AR谱估计与线性预测谱估计等效5.4.3最大熵谱估计及其与AR谱估计的等效性5.4.4Levinson-Durbin递推算法5.5白噪声中正弦波频率的估计及谱估计的其
- (转载)基于TDOA声源定位算法仿真–MATLAB仿真
帅得亚皮
(转载)基于TDOA声源定位算法仿真–MATLAB仿真转载自:https://blog.xxcxw.cn/archives/28声源定位算法是利用麦克风阵列进行声音定位,属于宽带信号,传统的MUSIC和DOA算法并不适用该场景,本仿真主要用TDOA算法进行定位。常用的阵列信号定位算法主要有三大类:基于高分辨率谱估计的定位技术、基于可控波束形成(Beamforming)的定位技术和基于TDOA的定位
- 分解得到的时频域特征_脑电信号分析与处理(2)特征提取
hust2014wt
分解得到的时频域特征
特征提取的方法可以进行信号的时域、频域和时-频域分析。其中包括经验模态分解(EMD)、快速傅立叶变换(FFT)、小波变换(WT)、小波包分解(WPD)等。特征提取方法分为三类:谱估计方法、变换族和时间分解方法。不同类型的带通滤波器也可以用来将信号分解成不同的频率子带,然后从中提取特征以进行更详细的分析。从已有的研究中可以总结出四类特征,如图1所示,即:a.基于统计/小波的特征;b.基于谱的特征;c
- matlab 功率谱密度 汉宁窗_【转】功率谱密度相关方法的MATLAB实现
weixin_39596720
matlab功率谱密度汉宁窗
1.基本方法周期图法是直接将信号的采样数据x(n)进行Fourier变换求取功率谱密度估计的方法。假定有限长随机信号序列为x(n)。它的Fourier变换和功率谱密度估计存在下面的关系:式中,N为随机信号序列x(n)的长度。在离散的频率点f=kΔf,有:其中,FFT[x(n)]为对序列x(n)的Fourier变换,由于FFT[x(n)]的周期为N,求得的功率谱估计以N为周期,因此这种方法称为周期图
- 脑电时频分析-短时傅里叶变换
psybrain
脑电技术脑科学心理学大脑脑电时频分析短时傅里叶变换
关注“心仪脑”查看更多脑科学知识的分享。短时傅里叶变换(STFT)是脑电时频分析中一种基于滑动窗口法的简单常用的分析方法。它假设非平稳的信号可以被分成一系列短数据段的集合,每个数据段都可以看作是平稳的,频谱是固定的。在每一个数据段上进行常规的频谱估计方法,然后将所有数据段的频谱估计值堆叠在一起,形成在联合时频域上的一个频谱功率分布图。这些步骤包括:选择一个有限长度的窗口函数;从信号的起始点开始,将
- arma模型谱估计matlab_基于机器学习的心律失常分类(四)——心电信号特征提取[MATLAB]...
weixin_39776298
arma模型谱估计matlabmatlab截取数组一部分matlab特征点提取配准拼接matlab肌电信号去噪程序
目前比较常用的特征提取是提取心电信号的各波形间期长度、波峰高度等,本文是使用ARMA模型对心电信号进行处理,使用其系数来作为特征。一、心拍划分大多伴有异常波形的心律失常信号,通常都会具体表现在单个心拍中,需要对信号进行心拍划分。心拍信号截取的常见方法之一是以R波位置作为定位点,前后分别截取估计的采样点数。R波位置上图是用matlab找出的R波位置,下面附上代码。但是我直接用的注释文件中标注的R波位
- 阵列信号处理复习
lumen_tt
matlab经验分享
一、知识点总结:1、阵列的基本作用:阵列信号处理是指将一组传感器按一定的方式布置在空间不同位置上,形成传感器阵列,用传感器阵列接收空间信号,相当于对空间分布的场信号采样,得到信号源的空间离散观测数据。的任务:从噪声和干扰中检测有用信号,估计信号波形,对接受的信号与噪声场进行时空谱估计,估计信号到达方向;对信号源定位。阵列信号处理的两个主要方面:波束形成、参数估计。波束形成的功能:形成基阵接收系统的
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s