- 每周编辑精选|RJUA-QA 医疗数据集上线、 3D 分子生成模型 ResGen 论文解析
HyperAI超神经
AIforscience
HyperAI超神经的新栏目来啦~每周一超神经编辑部会精选上一周更新在hyper.ai官网的内容(数据集、AI4S论文案例、百科词条)发布在这里。欢迎直接访问hyper.ai查看全部内容哦!1月15日-1月21日,hyper.ai官方网站更新速览:优质公共数据集:10个AI4S论文案例:2篇热门百科词条:10条访问官网:https://hyper.ai/公开数据集精选1.CrossDock2020
- NeRF算法论文解析与翻译
超爱吃小蛋糕的66
深度学习算法人工智能深度学习三维重建NeRF
文章目录说明摘要一、简介二、相关工作2.1基于神经网络的3D形状表示2.2视图合成和基于图像的渲染三、基于神经辐射场的场景表示四、基于辐射场的体渲染五、神经辐射场优化5.1位置编码5.2分层体积采样5.3实施细则和损失函数说明NeRF:将场景表示为用于视图合成的神经辐射场本文主要对NeRF论文进行翻译(黑色字体),同时对一些不理解的概念和算法进行相应批注(红色字体)了解NeRF之前需要了解一些关于
- NeRF算法原理总结概述
超爱吃小蛋糕的66
深度学习算法深度学习人工智能自动驾驶NeRF三维重建
简介本文旨在对NeRF算法进行总结。论文翻译见博客:《NeRF算法论文解析与翻译》参考链接:神经网络辐射场NeRF、实时NeRFBaking、有向距离场SDF、占用网络Occupancy、NeRF自动驾驶NeRF详解NeRF入门之体渲染(VolumeRendering)NeRF中的位置编码1.算法概述整体上NeRF干了这么一件事,输入一组静态场景的连续RGB图像和每帧图像对应的位姿,基于体渲染技术
- Neural Tangent Kernel 理解(一)原论文解读
Bagba
机器学习深度学习神经网络机器学习NTK
欢迎关注WX公众号,每周发布论文解析:PaperShare,点我关注NTK的理解系列暂定会从(一)论文解读,(二)kernelmethod基础知识,(三)神经网络表达能力,(四)GNN表达能力等方面去写。当然,可能有的部分会被拆开为多个小部分来写,毕竟每一个点拿出来都可以写本书了。(本人各个系列旨在让复杂概念通俗易懂,力求获得进一步理解)NeuralTangentKernel(NTK)理论由[1]
- 【Pytorch】学习记录分享11——GAN对抗生成网络
大江东去浪淘尽千古风流人物
DeepLearningpytorch学习生成对抗网络
PyTorchGAN对抗生成网络0.工程实现1.GAN对抗生成网络结构2.GAN构造损失函数(LOSS)3.GAN对抗生成网络核心逻辑3.1参数加载:3.2生成器:3.3判别器:0.工程实现原理解析:论文解析:GAN:GenerativeAdversarialNets1.GAN对抗生成网络结构2.GAN构造损失函数(LOSS)LOSS公式与含义:LOSS代码实现:importtorchfromto
- 从 YOLOv1 到 YOLO-NAS 的所有 YOLO 模型:论文解析
T1.Faker
深度学习YOLO目标检测
在计算机视觉的浩瀚领域,有一支耀眼的明星,她的名字传颂着革新与突破的传奇——YOLO(YouOnlyLookOnce)。回溯时光,走进这个引人注目的名字背后,我们仿佛穿越进一幅画卷,一幅展现创新魅力与技术风华的画卷。很久以前,CVPR2016是一个注定光芒万丈的时刻。在这个充满期待的舞台上,JosephRedmon为世界呈现了一种单阶段目标检测的奇迹,她名为YOLO。这并非仅是一个算法,更是一曲深
- 3D hand pose:MediaPipe Hands: On-device Real-time Hand Tracking
AIRV_Gao
论文笔记深度学习计算机视觉手势姿态估计
MediaPipeHands:On-deviceReal-timeHandTracking论文解析0.摘要1.Introduction2.框架2.1BlazePalmDetector2.2HandLandmarkModel3.DatasetandAnnotation4.Results5.MediaPipegraphforhandtracking6.手势识别的应用论文链接:https://arxiv
- MatchPyramid实现文本匹配
愤怒的可乐
NLP项目实战#文本匹配实战MatchPyramid
引言今天利用MatchPyramid实现文本匹配。原论文解析→点此←。MatchPyramid核心思想是计算两段文本间的匹配矩阵,把它当成一个图形利用多层卷积网络提取不同层级的交互模式。匹配矩阵是通过计算两段输入文本基本单元(比如字或词)之间相似度得到的,作者提出了三种相似度计算函数。我们的实现采用余弦相似度。整体结构如上图所示。使用了两层卷积网络;每层卷积网络接一个最大池化层;最后利用两个全连接
- Make Pixels Dance: High-Dynamic Video Generation论文解析
江小皮不皮
人工智能深度学习PixelDance文本生成视频计算机视觉动态视频生成
高动态视频生成的新进展MakePixelsDance:High-DynamicVideoGeneration高动态视频生成的新进展前言视频生成模式摘要论文十问实验数据集定量评估指标消融研究训练和推理技巧训练技术推理技术更多的应用MakePixelsDance:High-DynamicVideoGeneration高动态视频生成的新进展前言动态视频生成一直是人工智能领域的一个重要且富有挑战性的目标。
- 软考高级系统架构设计师论文真题分析系列之:论软件架构风格
最笨的羊羊
软考高级系统架构设计师考试软考高级系统架构设计师论文真题分析系列论软件架构风格
软考高级系统架构设计师论文真题分析系列之:论软件架构风格一、论软件架构风格二、论文解析三、详细介绍架构风格的模型和含义1.数据流风格2.调用/返回风格3.独立构件风格4.虚拟机风格5.仓库风格一、论软件架构风格软件架构风格是描述某一特定应用领域中系统组织方式的惯用方式,定义一个系统家族,即一个体系结构定义一个词汇表和一组约束。**词汇表中包含一些构件和连接件类型,而这组约束指出系统是如何将这些构件
- 车道线检测:LSTR论文解析
AIRV_Gao
论文笔记车道线检测Transformers
车道线检测:End-to-endLaneShapePredictionwithTransformers论文解析1.Abstract2.Introduction3.RelatedWork4.Method4.1车道形状模型(LaneShapeModel)曲线的重新参数化4.2匈牙利拟合损失(HungarianFittingLoss)4.3网络结构4.3.1Backbone4.3.2Encoder4.3
- Zephyr-7B论文解析及全量训练、Lora训练
神洛华
LLMsllmnlp
文章目录一、Zephyr:DirectDistillationofLMAlignment1.1开发经过1.1.1Zephyr-7B-alpha1.1.2Zephyr-7B-beta1.2摘要1.3相关工作1.4算法1.4.1蒸馏监督微调(dSFT)1.4.2基于偏好的AI反馈(AIF)1.4.3直接蒸馏偏好优化(dDPO)1.4.4训练细节1.5实验二、alignment-handbook:低成本
- 【AlphaGo论文学习】Mastering the game of Go without human knowledge翻译及心得
PokiFighting
机器学习深度学习深度学习
原文地址:https://www.gwern.net/docs/reinforcement-learning/alphago/2017-silver.pdf参考的别人的学习解析:AlphaGoZero论文解析|蘑菇先生学习记更直接的论文翻译:【论文翻译】MasteringthegameofGowithouthumanknowledge(无师自通---在不借助人类知识的情况下学会围棋)_hwnbox
- STD-Trees: Spatio-temporal Deformable Trees for Multirotors Kinodynamic Planning (论文解析)
聪明小張
路径规划算法人工智能
STD-Trees:Spatio-temporalDeformableTreesforMultirotorsKinodynamicPlanning(论文解析)动态变形树树边表示轨迹树变形数值结果仿真结果一般的轨迹优化方案中仅考虑到空间约束、障碍物约束、动力学约束等,本文的轨迹运动设计方案增加时间维度的优化设计,提出动力学规划中的时空变形方法,使生成的轨迹更偏向于最优轨迹。提出以变形单元的形式对树进
- Fast R-CNN论文解析
小毛激励我好好学习
目标检测计算机视觉神经网络
文章目录一、介绍二、拟解决的关键问题三、FastR-CNN结构以及训练算法1.整体结构2.ROIPoolingLayer3.Pre-TrainedNetwork4.目标检测任务的微调5.尺度不变性四、总结五、参考文献本篇博客将要解析的论文是FastR-CNN,论文地址为:https://arxiv.org/abs/1504.08083一、介绍本文是RossGirshick于2015年发表的一篇文章
- 更快更准 | YOLOv3算法超详细解析(包括诞生背景+论文解析+技术原理等)
小哥谈
YOLO算法:基础+进阶+改进YOLO目标检测人工智能机器学习深度学习yolov3
前言:Hello大家好,我是小哥谈。YOLOv3是一种基于深度学习的目标检测算法,它可以快速而准确地在图像中检测出多个目标。它是由JosephRedmon和AliFarhadi在2018年提出的,是YOLO(YouOnlyLookOnce)系列算法的第三个版本。YOLOv3算法使用了Darknet-53网络作为其主干网络,并且采用了多尺度预测和多个尺度的边界框来提高检测效果。本篇文章就详细讲述一下
- 【阅读笔记】Federated Learning for Privacy-Preserving AI
HERODING77
联邦学习人工智能机器学习深度学习联邦学习PPFL
FederatedLearningforPrivacy-PreservingAI前言一、论文解析DefinitionCategorizationArchitectureApplicationExamplesUseCase1:FedRiskCtrlUseCase2:FedVisionOutlook二、论文总结三、个人感悟前言一篇来自CommunicationsofACM的文章,这类期刊相当于maga
- Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection(论文解析)
黄阳老师
目标检测人工智能计算机视觉
GroundingDINO:MarryingDINOwithGroundedPre-TrainingforOpen-SetObjectDetection:根据文字提示检测任意目标摘要1介绍2相关工作3.GroundingDINO3.1.特征提取和增强器3.2.语言引导的查询选择3.3.交叉模态解码器3.4.子句级别文本特征3.5.损失函数4实验4.1.设置4.2.Zero-ShotTransfer
- Detecting Everything in the Open World: Towards Universal Object Detection(论文解析)
黄阳老师
目标检测人工智能计算机视觉
DetectingEverythingintheOpenWorld:TowardsUniversalObjectDetection摘要1介绍2相关工作3准备工作4TheUniDetector框架4.1.异构标签空间训练4.2.开放世界推理5实验5.1.开放世界中的目标检测5.2.封闭世界中的目标检测5.3.广泛目标检测5.4开放词汇目标检测比较5.5.消融实验6结论摘要在本文中,我们正式探讨了通用
- Incremental Object Detection via Meta-Learning【论文解析】
黄阳老师
目标检测人工智能计算机视觉
IncrementalObjectDetectionviaMeta-Learning摘要1介绍2相关工作3方法3.1问题描述3.2元学习梯度预处理3.3增量式目标检测器摘要摘要:在真实世界的情境中,目标检测器可能会不断遇到来自新类别的物体实例。当现有的目标检测器应用于这种情景时,它们对旧类别的性能会显著下降。已经有一些努力来解决这个限制,它们都应用了知识蒸馏的变体来避免灾难性遗忘。然而,我们注意到
- 论文解析——Implementing Precise Interrupts in Pipelined Processors
KGback
#论文解析cpupipelineinterrupt
作者及发刊详情JamesE.SmithandAndrewR.Pleszkun.1988.ImplementingPreciseInterruptsinPipelinedProcessors.IEEETrans.Comput.37,5(May1988),562–573.https://doi.org/10.1109/12.4607摘要当一条指令执行结束另一条指令开始前,如果保存的进程状态和程序执行的
- [卷积神经网络]FasterNet论文解析
ViperL1
神经网络学习笔记1024程序员节
一、概述FasterNet是CVPR2023的文章,通过使用全新的部分卷积PConv,更高效的提取空间信息,同时削减冗余计算和内存访问,效果非常明显。相较于DWConv,PConv的速度更快且精度也非常高,识别精度基本等同于大型网络Swin-B,但是在GPU上可以提升36%的吞吐量。原文地址和代码地址如下:Run,Don'tWalk:ChasingHigherFLOPSforFasterNeura
- Segment Anything(论文解析)
黄阳老师
目标检测计算机视觉
SegmentAnything摘要1.介绍2SAM任务SAM模型摘要我们介绍了“SegmentAnything”(SA)项目:这是一个新的任务、模型和数据集对于图像分割。使用我们高效的模型进行数据收集,我们构建了迄今为止最大的分割数据集(远远超过其他数据集),其中包含了超过10亿个掩膜,覆盖了1100万张经过许可和尊重隐私的图像。该模型被设计和训练为可提示的,因此可以实现零次学习,适用于新的图像分
- Learning Open-World Object Proposals without Learning to Classify(论文解析)
黄阳老师
目标跟踪人工智能计算机视觉
LearningOpen-WorldObjectProposalswithoutLearningtoClassify摘要1介绍2相关工作3方法3.1基线3.2基于纯定位的对象性3.3.对象定位网络(OLN)4实验4.1跨类泛化4.2.开放世界类不可知检测4.3更多的跨数据集泛化4.3.1Objects365泛化4.3.2EpicKitchens的泛化4.4.对长尾目标检测的影响5结论摘要物体提议已
- 论文解析——一种面向Chiplet互连的高效传输协议设计与实现
KGback
#Chiplet#论文解析chipletD2D接口协议
作者及发刊详情熊国杰,张津铭,贺光辉.一种面向Chiplet互连的高效传输协议设计与实现[J].计算机工程与科学,2023,45(08):1339-1346.XIONGGuo-jie,ZHANGJin-ming,HEGuang-hui.DesignandimplementationofanefficienttransmissionprotocolforChipletinterconnection[
- 论文解析-基因序列编码算法DeepSEA
平平无奇科研小天才
论文人工智能深度学习
论文解析-DeepSEA参考亮点功能方法数据集来源数据实验评估评估DeepSEA预测染色质特征的性能评估DeepSEA在变异序列上的DHS预测性能数据集结果参考Zhou,J.,Troyanskaya,O.Predictingeffectsofnoncodingvariantswithdeeplearning–basedsequencemodel.NatMethods12,931–934(2015)
- 论文解析-moETM
平平无奇科研小天才
论文人工智能深度学习
论文解析-moETM参考亮点动机发展现状现存问题功能方法Encoder改进Decoder改进评价指标生物保守性批次效应移除实验设置结果多组学数据整合cell-topicmixture可解释性组学翻译性能评估RNA转录本、表面蛋白、染色质可及域调控关系研究1.验证同一主题下,topgene可以映射到topprotein过程结果2.跨主题验证gene-protein、peak-gene的调控关系过程结
- 论文解析——AMD EPYC和Ryzen处理器系列的开创性的chiplet技术和设计
KGback
#论文解析#ChipletchipletAMD
ISCA2021摘要本文详细解释了推动AMD使用chiplet技术的挑战,产品开发的技术方案,以及如何将chiplet技术从单处理器扩展到多个产品系列。正文这些年在将SoC划分成多个die方面有一系列研究,MCM的概念也在不断更新,AMD吸收了chiplet架构的理论并应用到实际的设计中。II.chiplets驱动力A.计算的强大需求B.摩尔定律正在解体C.大芯片难以挽救大型SoC的Die大小在不
- 论文解析——一种多核处理器直连接口QoS的设计与验证
KGback
#论文解析QoS接口协议
作者罗莉,周宏伟,周理,潘国腾,周海亮(@国防科技大学)刘彬(@武警贵州省总队)摘要多核处理器直接互连构建多路并行系统,一直是提高高性能计算机并行性的主要方式。主要研究多核处理器直连接口的QoS设计,通过直连接口完成跨芯片的cache一致性报文有效、可靠传输,实现共享主存的SMP系统。详细阐述了直连接口各个协议层的QoS设计的关键技术,基于UVM方法学构建了可重用验证平台,模拟验证了QoS设计的正
- iMAP——论文解析
gongyuandaye
深度学习slam深度学习NeRF
iMAP:ImplicitMappingandPositioninginReal-TimeiMAP是第一个提出用MLP作为场景表征的实时RGB-DSLAM。iMAP采用关键帧结构和多进程,通过动态信息引导的像素采样来提高速度,跟踪频率为10Hz,全局地图更新频率为2Hz。隐式MLP的优势在于高效的几何表示法和自动细节控制,以及对物体背面等未观察区域进行平滑、合理的填充。一、简介理想的3D表征应该具
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc