- 凸优化学习之旅
还有你Y
最优化学习
目录标题专业名词MM算法CCP算法:代码说明SCA算法:连续松弛梯度投影算法分支定界搜索法凸问题辨别OA算法λ-representationADMM算法代码说明BCD算法BCD(BlockCoordinateDescent)代码示例与ADMM的区别总结2024年5月6日15:15:26专业名词DC问题:DifferenceofConvex。Difference理解为差,convex是凸,DC问题就
- 运筹系列35:凸优化接口cvxpy
IE06
运筹学
1.凸优化问题1.1QP问题目标函数二阶,约束一阶,称为Quadraticprogramming1.2.QCQP目标二阶,约束二阶,QuadraticalConstraintQuadraticProgramming。1.3.SOCPsecondorderconeprogram,本质上还是一个QP问题(约束条件进行平方)。1.4DCP一个问题能够由目标函数和一系列约束构造。如果问题遵从DCP规则,这
- 基于 Python 和 cvxpy 求解 SOCP 二阶锥规划问题
- Easy
优化python数学建模线性代数自动驾驶机器人
cvxpy:Python功能包,为凸优化提供方便使用的用户接口,适配多种求解器SOCP:Second-OrderConeProgramming,二阶锥规划convexoptimization-凸优化,nonlinearoptimization-非线性优化timecomplexity-时间复杂度,polynomial-time-多项式时间Euclideannorm-欧几里德范数文章目录什么是SOCP
- 机器学习 | 凸/非凸目标函数 |非凸目标函数导致求解陷入局部最优
stone_fall
图像处理与机器学习
数学中最优化问题的一般表述是求取x∗∈χx^{*}\in\chix∗∈χ,使f(x∗)=min{f(x):x∈χ}f(x^{*})=min\{f(x):x\in\chi\}f(x∗)=min{f(x):x∈χ},其中x是n维向量,χ\chiχ是x的可行域,f是χ\chiχ上的实值函数。凸优化问题是指χ\chiχ是闭合的凸集且f是χ\chiχ上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非
- Task10-向前分布算法和梯度提升决策树
沫2021
1.前向分步算法前项分布算法可以解决分类问题,也可以解决回归问题。(1)Adaboost的加法模型:在Adaboost的基础上,将多个基分类器合并为一个复杂分类器,是通过计算每个基分类器的加权和。通常情况下这是一个复杂的优化问题,很难通过简单的凸优化的相关知识进行解决。而前向分步算法可以用来求解这种方式的问题,它的基本思路是:因为学习的是加法模型,如果从前向后,每一步只优化一个基函数及其系数,逐步
- 优化|复杂度分析——用于凸约束非凸优化问题的光滑化近似点增广拉格朗日算法
运筹OR帷幄
算法机器学习人工智能
1.简介对于无约束的非凸优化问题,算法复杂度的下界为Ω(1/ϵ2)\Omega(1/\epsilon^2)Ω(1/ϵ2);在目标函数光滑时,这个下界可以通过标准梯度下降算法来取到.对于带约束的非凸优化问题,这个下界依旧适用;到这里,我们自然会提出疑问:它是否也能通过某个一阶算法来取到?对此,本文[1]^{[1]}[1]作出了回答.文中介绍了一种简单的一阶算法——光滑化近似点增广拉格朗日方法(Smo
- 03 凸优化理论-凸函数
Jay Morein
优化理论与随机控制算法
03凸函数目录3.1凸函数的定义、性质(凸函数的判定)、示例3.2保凸运算3.4拟凸函数3.5对数凸函数3.3共轭函数3.6关于广义不等式的凸性3.1凸函数的定义、性质和例子(一)凸函数的定义&扩展值延伸3.1.1定义Def1凸函数的定义、几何含义定理1:仿射函数等价于既凸又凹函数。定理2(凸性由函数在直线上的性质刻画)*:凸函数的充要条件是与其定义域相交的任何直线上都是凸的。(可以将函数限制在直
- 凸优化问题:基础定义
TensorME
数学理论凸优化
“一旦将一个实际问题表述为凸优化问题,大体上意味着相应问题已经得到彻底解决,这是非凸的优化问题所不具有的性质。”——《译者序》“事实上,优化问题的分水岭不是线性与非线性,而是凸性与非凸性”——Rockafellar1什么是凸优化什么是凸优化?抛开凸优化中的种种理论和算法不谈,纯粹的看优化模型,凸优化就是:1、在最小化(最大化)的要求下,2、目标函数是一个凸函数(凹函数),3、同时约束条件所形成的可
- 深度学习|拉格朗日对偶及KKT条件推导
科研工作站
深度学习KKT对偶仿射
目录1主要内容2问题提出3对偶推导4KKT条件1主要内容在电力系统优化过程中,风光等分布式能源出力和负荷的不确定性(即源荷不确定性)形成了电力系统方向的研究热点,每个研究人员都试图通过自己的方法将研究推进的更深入一些,在理论研究的深层次上,离不开鲁棒优化,包括两阶段鲁棒优化、分布鲁棒优化算法等,鲁棒优化的基础知识是拉格朗日对偶和KKT条件,给大家推荐个课程——凌青老师的《凸优化》,该课程系统性讲解
- CVX工具包(for matlab)
夕夕夕夕嘻嘻嘻嘻
编程工具matlabcvx优化
CVX工具包(formatlab)CVX是斯坦福的教授StephenP.Bold等人开发的一个基于Matlab的凸优化工具包,能够解决诸如线性规划,二次规划,整数规划(需要license)等等优化问题,且使用非常的人性化。比如,求解最小二乘法等问题。Installation支持32/64位的Linux,MACOSX,Windows系统。可戳官方下载链接:http://cvxr.com/cvx/do
- Matlab中CVX工具箱使用
Upsame
MatlabCVXMatlab
Matlab中CVX工具箱使用CVX是一个凸优化解决工具,需要在Matlab上使用。CVX让Matlab变成一个模型语言,可以使用Matlab的标准语法完成优化问题的求解。安装下载官方安装包,解压缩到任意路径,建议和Matlab放到一起。打开Matlab,切换路径到CVX的存放路径,Matlab中运行cvx_setup命令即完成安装。cdC:\personal\cvxcvx_setupCVX支持的
- 【笔记】认识凸优化
假装有头像
笔记
凸优化凸优化是一类特殊的数学优化问题,其基本思路是凸优化的基本思路是通过利用凸性质,将优化问题转化为在凸集上定义的凸函数的最优化问题,从而能够借助凸优化的理论和算法来高效求解。凸优化问题相对于一般的优化问题更易于求解以下是凸优化的基本思路和特点:凸集:凸优化中的关键概念之一是凸集。凸集是一个具有凸性质的集合,即对于集合中的任意两点,连接它们的线段仍然在集合内部。凸优化通常涉及到在凸集上定义的优化问
- 自动驾驶轨迹规划之碰撞检测(二)
无意2121
自动驾驶轨迹规划算法游戏引擎算法自动驾驶
欢迎大家关注我的B站:偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频(bilibili.com)目录1.基于凸优化2.具身足迹3.ESDF自动驾驶轨迹规划之碰撞检测(一)-CSDN博客大家可以先阅读之前的博客1.基于凸优化以此为代表的算法则是OBCA无论是自车还是障碍物都可以表示为凸多边形,因此可以表示为多个超平面围成的空间同时,自车与障碍物的避撞表达式就可以写
- 深度学习数学知识点
搬砖成就梦想
深度学习人工智能
一、线性代数二、概率论三、微积分四、凸优化参考资料一、线性代数书籍&视频李宏毅线性代数MITLinearAlgebra知识点1)线性空间及线性变换2)矩阵的基本概念3)状态转移矩阵4)特征向量5)矩阵的相关乘法6)矩阵的QR分解7)对称矩阵、正交矩阵、正定矩阵8)矩阵的SVD分解9)矩阵的求导10)矩阵映射/投影11)矩阵的秩12)矩阵的特征值和特征空间二、概率论书籍&视频MITIntroduct
- 凸优化—常见分式规划解决方法及代码实现
兜兜转转m
通信仿真和学习算法
分式规划是凸优化中常见的问题,例如最大化能效等。这篇博客介绍了single-ratio分式规划的二种常见方法。1、Quadratictransform2、Dinkelbach'sTransform优化问题一个简单的优化问题如何使用上述二种方法来计算呢?Quadratictransform代码复现%%方法2:QuadraticTransform求解max(x/(x^2+1))s.tx>=0iter_
- 凸优化: 障碍函数法
QQ_AHAO
凸优化算法机器学习
上一节讲到了等式消除的牛顿法,这一节我们讲一般约束问题的障碍函数法。首先我们利用对数阀函数来近似替代示性函数,用来消去不等式约束。最终使得问题变为等式约束的牛顿法,然后消除法消去等式约束,再利用牛顿法进行迭代求解。例题:求解过程:以上都是笔者个人学习方法,如有不妥之处,欢迎大家批判指正,后续有时间,笔者会分享更多的凸优化学习方法给大家。
- 凸优化: 惩罚函数之内罚函数法(等式消除的newton法,一般约束问题的障碍函数法)
QQ_AHAO
凸优化其他经验分享机器学习
目录0.说明:1.等式约束的newton法:2.障碍函数法0.说明:相信不少小伙伴在学习内罚函数时会遇到不少障碍,接下来我将从结合个人学习过程,通过例题给小伙伴们讲解一下自己的见解,因为其理论知识在《凸优化》(王书宁译)介绍的很详细,所以我只介绍在例题中如何应用。由于外罚函数和内点法的不等式约束问题在网上都可以找到例题和求解方法,而且也相对较简单,所以在此我就多做赘述了。就讲述一下较难的等式消除的
- 深度卷积神经网络
sendmeasong_ying
深度学习cnn深度学习机器学习
目录1.AlexNet2.代码实现1.AlexNet(1)特征提取(2)选择核函数来计算相关性:怎么判断在高维空间里面两个点是如何相关的,如果是线性模型就是做内积。(3)凸优化问题(4)漂亮的定理丢弃法的作用就是因为模型太大了,使用它来对模型做正则。Relu相比于sigmoid梯度确实更大,Maxpooling使用的是最大值,因此输出的值比较大,梯度就比较大,训练就更加容易。输入是224*224,
- 凸优化Convex Optimization期末复习重点和考试笔记(一)凸集+凸函数
Q小Q琪
学习机器学习笔记人工智能
最近被凸优化考试整疯了,梳理出来一些复习重点和知识点笔记,希望能够帮助到有缘人!总共有四章重点,我分两个博客放哈~第一部分:凸集第二部分:凸函数以上是凸集和凸函数两章的期末复习笔记。
- 凸优化Convex Optimization期末复习重点和考试笔记(二)凸优化+对偶
Q小Q琪
学习机器学习人工智能笔记
接博客【凸优化ConvexOptimization期末复习重点和考试笔记(一)凸集+凸函数】第三部分:凸优化第四部分:对偶几种典型的凸函数以上就是凸优化和对偶函数部分,以及几种常见的凸函数。我们就考到这所以后面的没有整理,自己整理的有些地方可能有小错,希望大佬批评指正
- 【凸优化】【长链剖分】【2019冬令营模拟1.8】tree
YiPeng_Deng
题解凸优化长链剖分DP二分树形DP学习小计凸优化长链剖分树形DP预留数组空间二分
PROMBLEM给你一棵树,你需要在树上选择恰好m条点不相交的、长度至少为k的路径,使得路径所覆盖的点权和尽可能大。求最大点权和。数据保证有解。SOLUTION这是一道综合的题目,考察凸优化、长链剖分、树形DP、以及关于数组空间的优化首先引进凸优化凸优化就是关于答案可以表示成一个凸函数f(x),x是题目给出的参数,并且这个函数的斜率成下降的趋势(反过来也可以)假设我们已知的函数的最大值是f(m’)
- MATLAB中CVX工具箱解决凸优化问题的基本知识——语法、变量声明、目标函数、约束条件、cvx编程错误及解决方法
小易吾
MATLABCVX专栏matlab开发语言
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、语法二、变量声明三、目标函数四、约束条件五、函数六、cvx特有的数学运算表达式七、常见错误八、进阶阅读参考资料前言本文是在最近学习MATLABCVX工具箱解决凸优化问题时学到的一些知识点,分享出来供大家参考。进行CVX编程时,会遇到各种各样意想不到又难以解决的报错问题,如果编程过程中遇到了很多cvxbug和错误,可以阅
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 一句话总结卷积神经网络
城市中迷途小书童
一句话总结卷积神经网络核心:一个共享权重的多层复合函数。卷积神经网络在本质上也是一个多层复合函数,但和普通神经网络不同的是它的某些权重参数是共享的,另外一个特点是它使用了池化层。训练时依然采用了反向传播算法,求解的问题不是凸优化问题。和全连接神经网络一样,卷积神经网络是一个判别模型,它既可以用于分类问题,也可以用用于回归问题,并且支持多分类问题。
- 一篇文章讲清楚凸优化问题
小树modelwiki
人工智能算法支持向量机svm机器学习
本篇文章摘录自数模百科——支持向量机模型-凸优化问题。你是一个快递公司的老板,你们公司有三种车型:小货车,中型卡车和大货车。每种车型都有它的优点和缺点。小货车一次可以运少量的货物,运费便宜,但运送大量货物就需要多次往返;大货车一次可以运很多货物,可如果货物不多,就会浪费运输成本;中型卡车则介于两者之间。现在,你有一批货物需要运送,你要选择何种组合的车型才能在满足运送需求的同时,使得运输成本最低。你
- 【数模百科】支持向量机中的线性SVM讲解以及实现办法
小树modelwiki
支持向量机算法机器学习
本篇文章来源于线性SVM-数模百科,里面有完整的关于支持向量机SVM模型的讲解,还有数据处理、应用、优缺点等重要知识点。首先,强烈建议大家把我之前的文章读一遍。一篇文章讲清楚凸优化问题-CSDN博客快速理解对偶问题-CSDN博客支持向量机SVM模型里的二元线性分类是什么-CSDN博客支持向量机SVM中的核技巧(核函数)应该怎么理解-CSDN博客读完之后,我们开始今天的内容。你在一个屋子里举行了一个
- Convex Formulation for Learning from Positive and Unlabeled Data
zealscott
UnbiasedPUlearning.该论文在之前PUlearning中使用非凸函数作为loss的基础上,对正类样本和未标记样本使用不同的凸函数loss,从而将其转为凸优化问题。结果表明,该loss(doublehingeloss)与非凸loss(ramp)精度几乎一致,但大大减少了计算量。IntrodutionBackground论文首先强调了PU问题的重要性,举了几个例子:Automaticf
- 最优化理论期末复习笔记 Part 2
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- Convex optimization 3.1 --- 凸优化问题 part1
expectmorata
#CVXMATHoptimization
1introduction在前面两个章节,回顾了凸集、凸函数、凸集和凸函数联系。从这章开始认识凸优化问题。其中,关于各种典型的类别的凸优化问题,主要参考了[2]。2凸优化问题2.1优化问题的标准形式2.1.1优化问题的最优解优化问题的最优解解集可能存在两种极端情况2.1.2优化问题的解集可行解如果xix_ixi满足fi(x)、hi(x)f_i(x)、h_i(x)fi(x)、hi(x),则称xix_
- 最优化理论期末复习笔记 Part 1
hijackedbycsdn
笔记最优化凸优化
数学基础线性代数从行的角度从列的角度行列式的几何解释向量范数和矩阵范数向量范数矩阵范数的更强的性质的意义几种向量范数诱导的矩阵范数1范数诱导的矩阵范数无穷范数诱导的矩阵范数2范数诱导的矩阵范数各种范数之间的等价性向量与矩阵序列的收敛性函数的可微性与展开一维优化问题牛顿莱布尼茨公式对多维的拓展Lipschitz连续中值定理凸优化问题凸函数的判断f在D一阶可微正定矩阵f在D二阶可微无约束问题的最优性条
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla