HDU6025 Coprime Sequence

Coprime Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 72    Accepted Submission(s): 51


Problem Description
Do you know what is called ``Coprime Sequence''? That is a sequence consists of  n positive integers, and the GCD (Greatest Common Divisor) of them is equal to 1.
``Coprime Sequence'' is easy to find because of its restriction. But we can try to maximize the GCD of these integers by removing exactly one integer. Now given a sequence, please maximize the GCD of its elements.
 

Input
The first line of the input contains an integer  T(1T10), denoting the number of test cases.
In each test case, there is an integer  n(3n100000) in the first line, denoting the number of integers in the sequence.
Then the following line consists of  n integers  a1,a2,...,an(1ai109), denoting the elements in the sequence.
 

Output
For each test case, print a single line containing a single integer, denoting the maximum GCD.
 

Sample Input
 
   
3 3 1 1 1 5 2 2 2 3 2 4 1 2 4 8
 

Sample Output
 
   
1 2 2
 

Source
2017中国大学生程序设计竞赛 - 女生专场
 

Recommend
jiangzijing2015   |   We have carefully selected several similar problems for you:   6032  6031  6030  6029  6028 


题意就不多说了,作为菜鸡看到如此做法我一定要发表一下;
不多BB,看代码:
#include
#include
#include
using namespace std;
int a[100005];//a[i]表示1到i所有数的GCD
int b[100005];//b[i]表示i到n所有数的GCD
int s[100005];
int gcd(int a,int b)
{
   if(b==0)
      return a;
   return gcd(b,a%b);
}
int main()
{
   ios::sync_with_stdio(false);
   int t;
   cin>>t;
   while(t--)
   {
      int n;
      cin>>n;
      for(int i=1;i<=n;i++)
      {
         cin>>s[i];
         if(i==1)
         {
            a[i]=s[i];
            continue;
         }
         if(i==n)
         b[i]=s[i];
         a[i]=gcd(a[i-1],s[i]);
      }
      for(int i=n-1;i>=1;i--)
      b[i]=gcd(b[i+1],s[i]);
      int ans=1;
      for(int i = 1; i <= n; ++i)
      {
         if(i == 1) ans=max(ans,b[2]);
         else if(i == n) ans=max(ans,a[n - 1]);
         else ans = max(ans, gcd(a[i - 1],b[i + 1]));
}
cout<    }
}

你可能感兴趣的:(数论)