GCD
题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数。 (文末有题)
知识点: 欧拉函数。http://www.cnblogs.com/shentr/p/5317442.html
题解一:
当M==1时,显然答案为N。
当M!=1。 X是N的因子的倍数是 gcd(X,N)>1 && X<=N 的充要条件。so 先把N素因子分解,
N= (e1,e2,…en 从0~ei的全排列包含了所有N的因子。)(可能表达不清,看下面。。)
()中内容相当于:
for(int i=0;i
for(int j=0;j
…
for(int k=0;k
x=p1^i*p2^j…pn^k
用dfs解决这个问题,得到所有N的因子。
假设N=p*d,X=q*d.若n与x的最大公约数为d,则能够推出p与q肯定是互质的,因为X<=N所以要求的就是p的欧拉函数值了,那么我们就转化成求满足:N=p*d,并且d>=N的p的欧拉函数值之和了。
如果dfs不是用的很溜的看解法二。
//解法1:
#include
#include
#include
using namespace std;
typedef long long LL;
const int N=1e5;
bool vis[N];
int prime[N],cnt;
void is_prime()
{
cnt=0;
memset(vis,0,sizeof(vis));
for(int i=2; i1)
return ans-ans/n;
}
LL dfsans[N],cnt3=0;
void dfs(int cur,LL x)
{
if(cur==cnt2)
{
dfsans[cnt3++]=x;
return;
}
for(int i=0;i<=e[cur];i++)
{
LL ans=1;
for(int j=0;j>t;
is_prime();
while(t--)
{
LL n,m;
cin>>n>>m;
fenjie(n);
LL ans=0; cnt3=0;
dfs(0,1);
for(int i=0;i=m)
ans+=Euler(n/dfsans[i]);
}
cout<
题解二:
只是把dfs换了,其他思路和上面一样。
#include
#include
#include
using namespace std;
typedef long long LL;
const int N=1e5;
bool vis[N];
int prime[N],cnt;
void is_prime()
{
cnt=0;
memset(vis,0,sizeof(vis));
for(int i=2;i1)
return ans-ans/n;
}
/*LL dfsans[N],cnt3=0;
void dfs(int cur,LL x){ if(cur==cnt2) { dfsans[cnt3++]=x; return; } for(int i=0;i<=e[cur];i++) { LL ans=1; for(int j=0;j>t;
is_prime();
while(t--)
{
LL n,m;
cin>>n>>m;
fenjie(n);
LL ans=0;
/*for(int i=0;i=m)
ans+=Euler(n/dfsans[i]);
}*/
for(int i=1;i*i<=n;i++)
{
if(n%i==0)
{
if(i>=m)
ans+=Euler(n/i);
if((n/i!=i)&&(n/i>=m))
ans+=Euler(i);
}
}
cout<