- 摆(行列式、杜教筛)
dygxczn
线性代数
有一个n×nn\timesnn×n的矩阵AAA,满足:Ai,j={1i=j0i≠j∧i∣jCotherwiseA_{i,j}=\begin{cases}1&i=j\\0&i\not=j\landi\midj\\C&\text{otherwise}\end{cases}Ai,j=⎩⎨⎧10Ci=ji=j∧i∣jotherwise求det(A)\det(A)det(A)。答案模998244353
- 一些些筛子(埃氏筛、线性筛、杜教筛)
溶解不讲嘿
数论算法c++推荐算法学习笔记
有时我们需要求出一个范围内的质数,或者要计算一些积性函数的值,但往往题目无法承受直接判断质数、直接求函数值的时间复杂度,这时我们就可以用筛子了入门级:埃氏筛假设当前有一块板,板上写着2∼n2\simn2∼n的数,如果我们想快速找出质数,那么我们可以考虑标记那些合数,让划了斜线的数表示合数,于是我们从左往右依次看,当遇到一个质数时,就把后面他的所有的倍数都划上斜线,而这就是埃氏筛的原理for(int
- 杜教筛和狄利克雷卷积
yyf525
数论c++
零、前置知识1.积性函数积性函数的定义:若(a,b)=1(a,b)=1(a,b)=1,则f(a⋅b)=f(a)⋅f(b)f(a\cdotb)=f(a)\cdotf(b)f(a⋅b)=f(a)⋅f(b)。常见的积性函数有:φ\varphiφ函数,μ\muμ函数等。积性函数有以下性质:若f(x),g(x)f(x),g(x)f(x),g(x)均为积性函数,则h(x)=f(x)⋅g(x)h(x)=f(x)
- 杜教筛练习题
tanjunming2020
题解题解c++
前置知识:杜教筛题目大意给定nnn,求∑i=1n∑j=1n∑k=1nϕ(gcd(i,j,k))\sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^n\phi(\gcd(i,j,k))i=1∑nj=1∑nk=1∑nϕ(gcd(i,j,k))输出其结果模202309232023092320230923后的值。1≤n≤1091\leqn\le
- 总结
asddzgn0704
总结
文章目录一、常见错误代码细节其它二、一些技巧一、动态规划DP设计DP优化二、字符串三、数学数论等计数四、博弈五、树上问题六、图论七、网络流八、数据结构九、其它三、一些公式组合数二项式反演min/max容斥扩展单位根反演EXCRT杜教筛四、一些模板一、常见错误代码细节当两个特别大的数相乘后取模时,要使用快速乘。注意:使用longlong时,要检查传参是否传int。注意:不要3数连乘不要int×int
- 数论分块学习笔记
Dawn-_-cx
数论学习笔记算法数论c++数论分块杜教筛
准备开始复习莫比乌斯反演,杜教筛这一部分,先复习一下数论分块0.随便说说数论分块可以计算如下形式的式子∑i=1nf(i)g(⌊ni⌋)\sum_{i=1}^{n}f(i)g(\lfloor\frac{n}{i}\rfloor)∑i=1nf(i)g(⌊in⌋)。利用的原理是⌊ni⌋\lfloor\frac{n}{i}\rfloor⌊in⌋的不同的值不超过2n2\sqrt{n}2n个。当我们可以在O(
- 杜教筛的小结
罚时大师月色
c++
总所周知,杜教筛是一个可以快速求积性函数前缀和的工具,为了快速理解杜教筛,自己给自己写了一个文章快速理解。它可以在O(n2/3)的复杂度快速求出某个积性函数的前缀和。例如,我们想要知道fff函数的前缀和,我们可以去找一个ggg函数,可以O(1)求出前缀和的两个函数ggg函数,f∗gf*gf∗g函数。f∗gf*gf∗g函数中间的乘号代表迪利克雷卷积。常见的迪利克雷卷积有μ∗I=ϵμ*I=ϵμ∗I=ϵ
- 【SSL 2402】最简根式(杜教筛)(整除分块)
SSL_TJH
#数学或数论杜教筛整除分块
最简根式题目链接:SSL2402题目大意多次询问,每次给你一个n,问你有多少个a,b=2使得任意正整数x都有ax+b的k次开根不是最简根式。思路考虑对应a,ba,ba,b会有的性质。那注意到要任意整数都有不是最简根式,而不是最简根式代表有一个因子是xkx^kxk(x⩾2,k⩾2x\geqslant2,k\geqslant2x⩾2,k⩾2)那注意到有x3x^3x3一定有x2x^2x2(其他也类似),
- 思维题练习专场-数学篇
weixin_30718391
数据结构与算法
转载请注明地址:http://www.cnblogs.com/LadyLex/p/8885799.html太可怕了终于还是来做数学了……之前只是看过一点点反演相关的东西之前的总结:杜教筛反演提升的目标是思维,尤其是找到关键性质作为突破口的能力。不可能找到一种解决所有问题的通式,尤其是在数学这里……所以培养观察分析关键性质的能力就尤为重要这篇博客也将重点记录每道题的突破关键点……希望自己在2天时间里
- 洛谷P3768 简单的数学题
tanjunming2020
题解c++
洛谷P3768简单的数学题题目大意给出nnn和质数ppp,求(∑i=1n∑j=1nijgcd(i,j)) mod p\left(\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)\right)\bmodp(i=1∑nj=1∑nijgcd(i,j))modp题解前置知识:杜教筛原式为∑i=1n∑j=1nijgcd(i,j)\sum_{i=1}^n\sum_{j=1}^nij\
- [洛谷 P6055] [RC-02] GCD (莫比乌斯反演 杜教筛)
凌乱之风
数论题算法数论杜教筛
题意求∑i=1n∑j=1n∑p=1⌊nj⌋∑q=1⌊nj⌋[gcd(i,j)=1][gcd(p,q)=1]\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{p=1}^{\lfloor\frac{n}{j}\rfloor}\sum_{q=1}^{\lfloor\frac{n}{j}\rfloor}[\gcd(i,j)=1][\gcd(p,q)=1]i=1∑nj=1∑np=1∑⌊
- 洛谷P6055 [RC-02] GCD
tanjunming2020
题解c++
洛谷P6055[RC-02]GCD题解前置知识:杜教筛题意即求∑i=1N∑j=1N∑p=1⌊Nj⌋∑q=1⌊Nj⌋[gcd(i,j)=1][gcd(p,q)=1]\sum_{i=1}^N\sum_{j=1}^N\sum_{p=1}^{\lfloor\frac{N}{j}\rfloor}\sum_{q=1}^{\lfloor\frac{N}{j}\rfloor}[\gcd(i,j)=1][\gc
- 杜教筛学习
tanjunming2020
数论算法c++算法
前置知识:狄利克雷卷积杜教筛杜教筛是快速求某些积性函数的前缀和的一种方法,时间复杂度一般能达到O(n23)O(n^{\frac23})O(n32)。设f,gf,gf,g为积性函数,F,GF,GF,G分别是f,gf,gf,g的前缀和。hhh为f,gf,gf,g的狄利克雷卷积,HHH为hhh的前缀和。我们要求FFF,但FFF不好求,而G,HG,HG,H比较好求,我们可以通过G,HG,HG,H得到FFF
- 洛谷P4213 【模板】杜教筛
tanjunming2020
题解c++
前置知识:杜教筛洛谷P4213【模板】杜教筛求∑i=1nϕ(i)\sum\limits_{i=1}^n\phi(i)i=1∑nϕ(i)和∑i=1nμ(i)\sum\limits_{i=1}^n\mu(i)i=1∑nμ(i),其中1≤n≤1091\leqn\leq10^91≤n≤109。先求∑i=1nϕ(i)\sum\limits_{i=1}^n\phi(i)i=1∑nϕ(i),我们知道ϕ∗I=Id
- 积性函数求前缀和
Drin_E
数论杜教筛
积性函数定义若函数f满足a,b互质有f(a*b)=f(a)*f(b),我们则称f是积性函数。常见的比如欧拉函数,莫比乌斯函数,都属于积性函数。积性函数求前缀和线性筛法,利用积性函数的积性,筛素数同时可以计算积性函数。然而有些问题要求低于线性的复杂度。杜教筛同样利用积性函数的性质。举常见的莫比乌斯函数为例。求∑ni=1μ(i)(1=2于是有s(n)=1-∑ni=2∑⌊ni⌋d=1μ(d)(这里的i表
- [日记&做题记录]-Noip2016提高组复赛 倒数十天
躲不过这哀伤
数据结构与算法
写这篇博客的时候有点激动为了让自己不颓还是写写日记存存模板Nov.82016今天早上买了两个蛋挞吃了一个然后就做数论(前天晚上还是想放弃数论但是昨天被数论虐了wocnoip模拟赛出了道杜教筛)然后白天就脑补了几道积性函数把例题过了一遍Submit_Time1696174wohenshuai2154Accepted245432kb10556msC++/Edit1152B2016-11-0816:50
- 洛谷P4213 杜教筛模板
stdforces
算法
[模板]杜教筛:计算∑i=1nμ(i)∑i=1nϕ(i)\sum_{i=1}^{n}\mu(i)\\\sum_{i=1}^{n}\phi(i)i=1∑nμ(i)i=1∑nϕ(i)Solution:杜教筛是一种能在O(n23)O(n^{\frac{2}{3}})O(n32)时间复杂度下计算积性函数的前缀和的算法,假设我们需要求积性函数f(x)f(x)f(x)的前nnn项和S(n)=∑i=1nf(i)
- 杜教筛【莫比乌斯前缀和,欧拉函数前缀和】推导与模板【一千五百字】
秦小咩
数论进阶数论莫比乌斯反演杜教筛
下图给出杜教筛详细推导过程,前置知识有积性函数和莫比乌斯反演。杜教筛是一种优秀的求积性函数前缀和算法,其时间复杂度受预处理数组的影响,一般开到2/3次幂大小,可使复杂度达到较为优秀的程度。杜教筛的时间复杂度还要取决于预处理数组的大小,将预处理前缀和数组处理到n^(2/3)大小会使杜教筛时间复杂度缩短至O(n^(2/3)),否则会超时【模板】杜教筛(Sum)-洛谷#include#include#i
- 牛客P21546 莫比乌斯反演+杜教筛
stdforces
算法
题意:给出n,k,l,rn,k,l,rn,k,l,r,从区间[l,r][l,r][l,r]内取出nnn个数,并且他们的最大公约数为kkk,有多少种取法?这nnn个数可以有相等的Solution:即计算∑a1=lr∑a2=lr...∑an=lr[gcd(a1,a2,...,an)=k]\sum_{a_{1}=l}^{r}\sum_{a_{2}=l}^{r}...\sum_{a_{n}=l}^{r}[
- 【NOI模拟赛】摆(线性代数,杜教筛)
DD(XYX)
数学线性代数算法亚线性筛矩阵开摆
题面6s,1024mb我是XYX,我擅长摆。我在摆大烂的时候看到一个n×nn\timesnn×n的矩阵AAA:Ai,j={1i=j0i≠j∧i∣jCotherwiseA_{i,j}=\begin{cases}1&i=j\\0&i\not=j\landi|j\\C&{\rmotherwise}\end{cases}Ai,j=⎩⎪⎨⎪⎧10Ci=ji=j∧i∣jotherwise现在我想知道AAA
- ABC239Ex Dice Product 2
andyc_03
做题记录
A题面分析我们设fif_ifi表示当限制m为i的时候期望步数大小那么可以得到f0=0f_0=0f0=0,fi=1+1n∑j=1nf⌊ij⌋f_i=1+\frac{1}{n}\sum_{j=1}^nf_{\lfloor\frac{i}{j}\rfloor}fi=1+n1∑j=1nf⌊ji⌋通过记忆化搜索可以得出答案复杂度为O(n34)O(n^{\frac{3}{4}})O(n43),证明方式和杜教筛
- 2018 ACM 四川省赛 G. Grisaia(超棒的杜教筛好题)
繁凡さん
数学-杜教筛数学-莫比乌斯反演
整理的算法模板合集:ACM模板点我看算法全家桶系列!!!实际上是一个全新的精炼模板整合计划G.Grisaia(灰色的果实好耶《灰色的果实(TheFruitofGrisaia)》)Weblinkhttps://www.oj.swust.edu.cn/problem/show/2810Problem计算:ans=∑i=1n∑j=1i(nmod(i×j))ans=\sum^n_{i=1}\sum^i_{
- 【算法讲12:杜教筛入门】亚线性时间复杂度 求 积性函数前缀和
溢流眼泪
【算法/知识点浅谈】算法数论杜教筛
【算法讲12:杜教筛入门】前置知识引入思路对于φ\varphiφ的杜教筛对于μ\muμ的杜教筛核心代码例子核心代码前置知识积性函数与狄利克雷卷积【算法讲7:积性函数(下)】数论分块【算法讲6:数论分块(整除分块)】莫比乌斯反演与欧拉筛【算法讲8:莫比乌斯函数及其反演(理论部分)|欧拉筛】记忆化搜索。应该学过搜索的人都会的吧…引入【问题描述】【模板】杜教筛|洛谷P4213给定nnn,求∑i=1nφ(
- 模板 - min25筛
weixin_30882895
好像在某些情况下杜教筛会遇到瓶颈,先看着。暑假学一些和队友交错的知识的同时开这个大坑。2019/7/30求一个前缀和$\sum\limits_{i=1}^nf(i)$,其中\(f(x)\)是积性函数,且\(f(p^k)\)是一个关于\(p\)的低次多项式。#include#include#include#include#definelllonglongusingnamespacestd;const
- Min_25筛
weixin_30371469
听说这个东西能给予人力量那就来学一学吧功能就是筛一个积性函数\(f(i)\)的前缀和Min_25筛好像是最近才流行起来的筛法,复杂度是非常神奇的\(O(\frac{n^{\frac{3}{4}}}{logn})\)和杜教筛一样,使用这个筛法的也有一定要求,就是\(f(p^c)\)需要在\(O(1)\)求出来看看这个非常力量的筛法我们要求的东西是\[\sum_{i=1}^nf(i)\]我们先定义一个
- 洛谷 P2257 YY的GCD 莫比乌斯反演
一只叫橘子的猫
数学----莫比乌斯反演
P2257YY的GCD学习数论之莫比乌斯反演、杜教筛推荐:peng-ym推理:令:我们要求的是:令显然F(x)很容易求:我们反演一下:假设n#definelllonglongusingnamespacestd;constintmaxn=1e7+10;intprim[maxn],vis[maxn],mu[maxn],cnt;llg[maxn];voidget_mu(intn){mu[1]=1;for
- BZOJ 4176 [莫比乌斯反演][杜教筛]
Vectorxj
Description求∑i=1n∑j=1nd(ij)Solution通过陈老师r老师等式可以的得到该式子就等于∑i=1n∑j=1n⌊ni⌋⌊nj⌋[(i,j)=1]一波反演以后就得到∑d=1nμ(d)(∑i=1⌊nd⌋⌊nid⌋)2发现后面那个东西的取值只有O(n√)种,只需要枚举后面的值,前面的用杜教筛求就好了,时间复杂度为O(n34)。#include#include#include#inc
- kuangbin带你飞——基础数论专题习题总结
木每立兄豪
数论算法学习总结kuangbin带你飞数论
前一段时间做了kuangbin带你飞基础数论专题部分,可看了不少的相关的资料,在这里也来做一个总结。由于数论方面的知识太多了,有的知识我也不会,就不说知识点了,有关具体的知识可以参考刘汝佳紫书,白书上部分的专题,也可以看数论及应用(哈工大出版),这里只是对专题习题(加上最近网络赛的简单数论题,关于各种min25筛,杜教筛等等还没学)的汇总,关于数论的板子等学完计算几何和组合数学之后找个时间再汇总一
- 2019CCPC网络赛 HD6707——杜教筛
dianshu1593
题意求$f(n,a,b)=\sum_{i=1}^n\sum_{j=1}^igcd(i^a-j^a,i^b-j^b)[gcd(i,j)=1]\%(10^9+7)$,$1\len,a,b\le10^9$,共有$T$组测试,其中只有10组的$n$大于$10^6$.分析首先,当$i,j$互质,$a,b$互质时,有$gcd(i^a-j^a,i^b-j^b)=i-j$(证明见链接),也可以打表猜一猜嘛。可以推
- 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】
weixin_30823833
首先题目中给出的代码打错了,少了个等于号,应该是G=0;for(i=1;i#includeusingnamespacestd;constlonglongN=1000005,m=1000000,inv2=500000004,inv4=250000002,inv6=166666668,mod=1e9+7;longlongn,phi[N],q[N],tot,ans,ha[N];boolv[N];long
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu