- 阿里云力夺 FewCLUE 榜首!知识融入预训练+小样本学习的实战解析
阿里云技术
自然语言处理机器学习
一概述7月8日,中文语言理解权威评测基准CLUE公开了中文小样本学习评测榜单最新结果,阿里云计算平台PAI团队携手达摩院智能对话与服务技术团队,在大模型和无参数限制模型双赛道总成绩第一名,决赛答辩总成绩第一名。中文语言理解权威评测基准CLUE自成立以来发布了多项NLP评测基准,包括分类榜单,阅读理解榜单和自然语言推断榜单等,在学术界、工业界产生了深远影响。其中,FewCLUE是CLUE最新推出的一
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning 论文笔记
头柱碳只狼
小样本学习
前言目前大多数小样本学习器首先使用一个卷积网络提取图像特征,然后将元学习方法与最近邻分类器结合起来,以进行图像识别。本文探讨了这样一种可能性,即在不使用元学习方法,而仅使用最近邻分类器的情况下,能否很好地处理小样本学习问题。本文发现,对图像特征进行简单的特征转换,然后再进行最近邻分类,也可以产生很好的小样本学习结果。比如,使用DenseNet特征的最近邻分类器,在结合均值相减(meansubtra
- 每周编辑精选|FewJoint 基准数据集上线、科技部监督司发布 AI 新规
人工智能资讯数据集
小样本学习(Few-shotLearning)是指像人类一样能够通过很少的样本来学习掌握新任务。这一领域已经成为机器学习社区的热点,并被认为是推动机器智能接近人类智能的关键方向之一。哈工大推出了FewJoint基准数据集,为NLP小样本评测提供了公共的评价基准。该数据集已在hyper.ai上线,hyper.ai还有更多供中文大模型训练的NLP数据集可以下载哦~一起来看看吧!1月29日-2月2日,h
- 小样本学习系列工作(持续更新)
MingchenS
计算机视觉学习人工智能深度学习计算机视觉python
小样本学习系列工作有关小样本学习的各类文章通常会将其方法分成几个大类:基于度量学习的小样本方法、基于数据增强的小样本学习方法和基于模型初始化的小样本学习方法。我觉得这样分类并不好,因为三种方法之间并不是各自独立存在的,大多数情况下都是有交集的,比如一篇工作可能既使用了元学习的训练策略,同时又在度量方法上进行了创新。因此在梳理工作的时候,还是按照论文的顺序来梳理比较好,每篇工作都有他的特点,其思考的
- 小样本学习
Ada's
系统科学神经科学认知科学通用人工智能基础(语音文本图像等)
github.com/blue-blue272/fewshot-CAN从注意力方面的进展来看自然语言已经和图像在算法底层通用以下方法可能对小样本有帮助:
- 科大讯飞将于1月30日发布星火大模型 V3.5,基于全国产化算力底座训练
喜好儿aigc
人工智能科技aigcai
科大讯飞即将发布全新AI大模型——星火认知大模型V3.5,该模型将于14:00正式发布。据透露,相比于去年10月24日发布的V3.0版本,V3.5在逻辑推理、文本生成、数学答题及小样本学习能力上均实现了显著提升。科大讯飞官网链接:讯飞星火认知大模型-AI大语言模型-星火大模型-科大讯飞AI工具专区:+AI工具-喜好儿aigc科大讯飞股份有限公司是中国领先的人工智能企业,自1999年成立以来,专注于
- 【机器学习一百问 01】 迁移学习和小样本学习的本质不同是什么?
坚果仙人
机器学习机器学习迁移学习学习
注:这些只是个人理解,如有质疑可提问讨论!迁移学习和小样本学习都是机器学习领域的重要分支,它们虽然有一些交集,但在目的和核心方法上存在本质的不同:目的和焦点:迁移学习:其主要目的是利用在一个或多个源任务上获得的知识,来改善或加速对新任务的学习过程。迁移学习的核心在于“知识转移”,它不特定于数据量的多少。小样本学习:其核心挑战是如何在非常少量的数据(即小样本)上实现有效的学习。小样本学习特别关注于如
- CVPR19-Few-shot
vieo
CVPR19-Few-shot本文主要总结了CVPR2019的few-shot的文章,主要从motivation,具体方法上进行总结。小样本学习:训练中可以使用各类样本,但是测试时,面对新的类别(通常为5类),每类只有极少量的标注样本,以及来自相同类别的查询图像。基于度量的方法(在原型网络,图卷积的基础上改进)RevisitingLocalDescriptorbasedImage-to-Class
- 小样本学习(FSL)和元学习、数据增强和对比学习各自的概念和相互关系
Chowley
机器学习深度学习自然语言处理lstmchatgpt
前言最近一周在做简历和投递,想找个暑假的实习岗,有几个过了初筛,今天围绕我的简历讲解一下里面的科研经历和方向推荐,也是给自己做一个总结。去年疫情开始,取消线下课程和考试,我闲着没事,就搞起了研究,很巧的是和ChatGPT时间重叠了,当时因为网上全是防治疾病的,我也就错过了ChatGPT的黄金期,不然没准就是搞NLP了,今天我也请GPT4.0一同创作,看能不能给这篇博客带来不一样的火花。小样本学习F
- 小样本学习综述
雪夜的星_e40c
小样本学习(Few-shotLearning)综述摘要:人类非常擅长通过极少量的样本识别一个新物体,比如小孩子只需要书中的一些图片就可以认识什么是“斑马”,什么是“犀牛”。在人类的快速学习能力的启发下,研究人员希望机器学习模型在学习了一定类别的大量数据后,...分类非常常见,但如果每个类只有几个标注样本,怎么办呢?笔者所在的阿里巴巴小蜜北京团队就面临这个挑战。我们打造了一个智能对话开发平台--Di
- 小样本学习介绍(超详细)
s_m_c
计算机视觉学习人工智能深度学习计算机视觉
小样本学习介绍本文首先介绍了什么是小样本学习,其次介绍了为什么小样本学习的很多文章都采用元学习的方法。目的是通过通俗的解释更加清楚的介绍小样本学习是什么,适合初学者的入门。当然,以下更多的是自己的思考,欢迎交流。什么是小样本学习?当我开始接触“小样本”这个术语的时候,给我的第一感觉就是他的数据集很小(这也是我入坑小样本学习最开始的原因,以为炼丹不需要太久),相信很多人有个同样的感觉,但是事实上并不
- 【深度学习:Few-shot learning】理解深入小样本学习中的孪生网络
jcfszxc
深度学习知识库深度学习学习人工智能
【深度学习:Few-shotlearning】理解深入小样本学习中的孪生网络深入理解孪生网络:架构、应用与未来展望小样本学习的诞生元学习小样本学习孪生网络的基本概念孪生网络的细节TripletLoss架构特点关键组件训练过程主要应用领域未来展望示例图片结论备注:本篇博客中有部分图片由GPT生成深入理解孪生网络:架构、应用与未来展望在人工智能和机器学习的领域中,**孪生网络(SiameseNetwo
- 【论文阅读笔记】One-Shot Relational Learning for Knowledge Graphs - EMNLP 2018
卷卷0v0
论文阅读知识图谱论文阅读知识图谱神经网络
知识图谱-->知识补全-->长尾问题-->元关系学习基于度量的方法(本文)基于优化的方法文章目录Abstract1Introduction2RelatedWork关系学习的嵌入模型小样本学习3Background3.1问题定义3.2One-Shot学习设置4Model4.1邻居编码器4.2匹配处理器4.3损失函数和训练5Experiments5.1数据集5.2实施细节5.3结果关于模型选择的备注5
- 小样本学习idea(不断更新)
s_m_c
学习
在此整理并记录自己的思考过程,其中不乏有一些尚未成熟或者尚未实现的idea,也有一些idea实现之后没有效果或者正在实现,当然也有部分idea已写成论文正在投稿,都是自己的一些碎碎念念的思考,欢迎交流。研一上学期9.18现有思路:1.用pretrain好的MAE,采用不同的遮挡方式(或者遮挡比例,固定或者不固定,随机或者block-wise),生成不同遮挡方式下的特征,相当于单张图片的样本扩充。2
- 论文解读:Exploring Complementary Strengths of Invariant and Equivariant Representations
十有久诚
深度学习人工智能
小样本学习论文解读:ExploringComplementaryStrengthsofInvariantandEquivariantRepresentationsforFew-ShotLearning摘要teach:这篇文章尽管标题带小样本学习,但是并没有设计一套小样本学习的算法,而是用一种数据增强或者数据增广的方式生成更多的样本。通过样本之间的训练或者学习来去提升这个模型的泛化能力。用积累的数据
- CVPR 2023 精选论文学习笔记:Meta-Tuning Loss Functions and Data Augmentation for Few-Shot Object Detection
结构化文摘
学习笔记目标检测人工智能计算机视觉深度学习
我们给出以下四个分类标准:1.学习方法元学习:元学习是一种学习范式,旨在教模型如何快速学习新任务。在小样本学习的背景下,元学习算法在各种任务上进行训练,每个任务只有少数示例。这允许模型学习如何调整其学习过程以适应新任务,即使这些任务与它以前见过的任务非常不同。数据增强:数据增强是一种通过对现有数据应用转换来生成新训练数据的技术。这对于小样本学习来说可以是一种有用的技术,因为它可以帮助增加可用训练数
- 基于小样本学习的SAR图像识别
吧啦_吧啦
姓名:刘倩学号:19021210889【嵌牛导读】:对于SAR图像目标识别,目前研究人员是基于大样本进行建模和研究,而对于小样本条件下的SAR图像目标识别,只有少部分人开展了研究,并且与大样本数据相比较,其识别准确率较低。针对这一问题提出了一种新的算法——卷积自编码器算法。该方法能自动识别小样本图像中的有效特征,提高识别准确率。【嵌牛鼻子】:小样本学习,深度学习,卷积神经网络,自编码器【嵌牛提问】
- 分布式系统-拜占庭将军问题-通信协议
TBYourHero
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019什么是拜占庭将军问题?在很久很久以前,拜占庭是东罗马帝国的首都。那个时候罗马帝国国土辽阔,为了防御目的,因此每个军队都分隔很远,将军与将军之间只能靠信使传递消息。在打仗的时候,
- 目标检测||速览
TBYourHero
深度学习objectdetection
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019目录一:基础概念二:两种方法2.1两阶段法R-CNNSPPNetFastR-CNNPFNMaskR-CNN2.2一阶段法YOLOSSDDSSDRetinaNet总结一:基础概念
- 小样本学习在图像识别中的挑战与突破
matlabgoodboy
学习
小样本学习(Few-ShotLearning)是一种机器学习方法,旨在从很少的样本中学习并做出准确的预测。在图像识别领域,小样本学习面临一些挑战,同时也涌现出一些突破性的解决方法。挑战:缺乏数据:小样本学习的主要挑战之一是样本数量有限,这使得传统深度学习模型难以学习足够的特征。过拟合:由于样本少,模型容易过拟合,即在训练样本上表现良好,但在未见过的数据上表现不佳。领域差异:在小样本学习中,模型需要
- FusionDiff:第一个基于扩散模型实现的多聚焦图像融合的论文
ctrl A_ctrl C_ctrl V
#多聚焦图像融合算法深度学习计算机视觉人工智能
文章目录1.论文介绍2.研究动机3.模型结构3.1网络架构3.2前向扩散过程3.3逆向扩散过程3.4训练和推理过程4.小样本学习4.实验结果1.论文介绍题目:FusionDiff:Multi-focusimagefusionusingdenoisingdiffusionprobabilisticmodels作者:MiningLi,中国科学技术大学录用期刊:ExpertSystemswithAppl
- 从技术到科学,中国AI向何处去?
人工智能学家
大数据编程语言机器学习人工智能深度学习
来源:科学网编辑:宗华排版:华园作者:金榕(阿里巴巴达摩院副院长、原密歇根州立大学终身教授)●AI时代序幕刚拉开,AI目前还处于初级阶段,犹如法拉第刚刚发现了交流电,还未能从技术上升为科学。●以深度学习为代表的AI研究这几年取得了诸多令人赞叹的进步,但部分也是运气的结果,其真正原理迄今无人知晓。●在遇到瓶颈后,深度学习有三个可能突破方向:深度学习的根本理解、自监督学习和小样本学习、知识与数据的有机
- SVM实现小尺寸图片分类
余生的观澜
计算机视觉KingofCVpython技术栈支持向量机机器学习分类
问题背景在工业识别的场景中,经常会遇到误判与误识别,所以最后输出的结果,需要再通过N分类算法去过滤一遍,确保识别到的物体,是我们想要的,能实现这个方案有很多,传统机器学习与深度神经网络都可以做到,传统机器学习,比如SVM,决策树,深度神经网络,从最简单的卷积到resnet,小样本学习,迁移学习,都可以实现。本文通过SVM对算法进行封装,实现一个图片的分类。参考资料https://blog.csdn
- 《Learning to Compare: Relation Network for Few-Shot Learning》
Lucifer_75d2
一、Introduction深度学习模型在视觉识别任务中取得了巨大的成功。然而,这些监督学习模型需要大量的标记数据和许多迭代来训练它们大量的参数。由于标注成本的原因,这严重限制了它们对新类的可拓展性,但从根本上限制了它们对新出现的或是很少出现的类的适用性。在这些类别中,大量注释的图像可能根本不存在。相比之下,人类在几乎没有直接监督或根本没有监督的情况下却非常擅长识别物体,例如小样本学习或零样本学习
- GPT系列发展及技术:GPT1到GPT3的发展,InstructGPT的RLHF流程,GPT4
榴莲_
gptchatgpttransformer语言模型自然语言处理
目录GPT系列前言Transformertransformer的代码实现Transformer位置编码具体结构BERT--EncoderGPT--Decoder微调方法--fine-tuningVSPromptingGPT1-GPT3GPT1预训练+微调1、无监督预训练2、有监督微调对子任务构造不同数据输入和bert对比GPT2-语言模型是多任务的学习器小样本学习GPT3动机数据集Instruct
- Optimization as a model for few-shot learning||论文阅读
TBYourHero
深度学习paperreading小样本学习
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019介绍:对Few-shotlearning中的优化进行建模本文通过将SGD更新规则解释为具有可训练参数的门控递归模型,描述了一种新的元学习方法。这个想法对于迁移学习相关的研究来说
- 小样本学习的k-way n-shot
TBYourHero
深度学习
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019如下图简单理解一下小样本的训练方式:Training(训练模型)SampleSetQuerySetTesting(测试模型)SupportSetTestSet(无label)训
- 贝叶斯网络
TBYourHero
math
元学习论文总结||小样本学习论文总结2017-2019年计算机视觉顶会文章收录AAAI2017-2019CVPR2017-2019ECCV2018ICCV2017-2019ICLR2017-2019NIPS2017-2019作者:Bioquan链接:https://www.jianshu.com/p/9d3a91cb2117来源:简书概率论只不过是把常识用数学公式表达了出来。——拉普拉斯记得读本科
- 小样本学习论文总结(few-shot learning)
亨利庞加莱
2015Koch,Gregory,RichardZemel,andRuslanSalakhutdinov."Siameseneuralnetworksforone-shotimagerecognition."ICMLDeepLearningWorkshop.Vol.2.2015.[paper]2016Ravi,Sachin,andHugoLarochelle."Optimizationasamod
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息