- 深度学习--自监督学习
Ambition_LAO
深度学习
自监督学习是一种无需大量人工标注的数据驱动方法,在生成模型中应用广泛。自监督学习通过利用数据中的固有结构或属性创建“伪标签”,使模型在没有人工标签的情况下进行学习。这种方法既提高了模型的训练效率,又降低了对标注数据的依赖。概念自监督学习:自监督学习是一种半监督学习的形式,模型通过从未标注的数据中创建自己的监督信号来进行学习。常见的方法包括通过预测数据的一部分来学习(例如,给定图像的部分,预测其余部
- 机器学习、深度学习、神经网络之间的关系
你好,工程师
AI机器学习
机器学习(MachineLearning)、深度学习(DeepLearning)和神经网络(NeuralNetworks)之间存在密切的关系,它们可以被看作是一种逐层递进的关系。下面简要介绍它们之间的关系:机器学习(MachineLearning):机器学习是一种人工智能的分支,关注如何通过数据让计算机系统从经验中学习,提高性能。机器学习算法可以分为监督学习、无监督学习、半监督学习和强化学习等不同
- 深度学习——概念引入
韶光流年都束之高阁
深度学习日记深度学习人工智能职场和发展
深度学习深度学习简介深度学习分类根据网络结构划分:循环神经网络卷积神经网络根据学习方式划分:监督学习无监督学习半监督学习根据应用领域划分:计算机视觉自然语言处理语音识别生物信息学深度学习简介深度学习(DeepLearning,DL)是机器学习领域中的一个新的研究方向,主要是通过学习样本数据的内在规律和表示层次,让机器能够具有类似于人类的分析学习能力。深度学习的最终目标是让机器能够识别和解释各种数据
- 【论文精读】SimCLR2
None-D
自监督学习机器学习人工智能deeplearning计算机视觉算法深度学习
摘要本文提出了一个半监督学习框架,包括三个步骤:无监督或自监督的预训练;有监督微调;使用未标记数据进行蒸馏。具体改进有:发现在半监督学习(无监督预训练+有监督微调)中,对于较大的模型只需采用少量有标签数据就可实现良好的结果证明了SimCLR中用于半监督学习的卷积层之后非线性变换(投影头)的重要性。更深的投影头能提高分类线性评估指标,也能提高从投影头的中间层进行微调时的半监督性能对于特定目标,过大的
- 半监督学习(主要伪标签方法)
拔牙的萌萌鼠
机器学习与深度学习学习机器学习深度学习
半监督学习1.引言应用场景:存在少量的有标签样本和大量的无标签样本的场景。在此应用场景下,通常标注数据是匮乏的,成本高的,难以获取的,与之相对应的是却存在大量的无标注数据。半监督学习的假设:决策边界应避开较高密度的区域。利用未有标记的样本来训练一个比仅使用有标记的样本可以获得的性能更好的模型1.1半监督学习方法半监督学习方法的分类:一致性规范化/一致性训练:对未标注数据进行扰动,两者的预测不存在显
- 为什么在半监督中的无监督阶段CE常常配合置信度使用而MSE通常不会
UndefindX
人工智能
在半监督学习中,结合无监督损失(如交叉熵(CE)损失)和置信度阈值的策略主要用于确保模型从高质量、高置信度的伪标签中学习。这种方法特别适用于分类问题,其中CE损失直接作用于模型的预测类别概率和目标(真实或伪)标签之间。使用置信度阈值可以帮助模型专注于那些它最有可能正确分类的样本,从而提高学习的效率和准确性,减少错误标签的负面影响。对于均方误差(MSE)损失,在某些情况下,其使用方式可能不同,原因如
- 论文阅读_对比学习_SimCLR
xieyan0811
介绍英文题目:ASimpleFrameworkforContrastiveLearningofVisualRepresentations中文题目:视觉表征对比学习的简单框架论文地址:https://arxiv.org/abs/2002.05709v2领域:深度学习,知识表示,半监督学习,对比学习发表时间:2020作者:TingChen,Hinton团队,GoogleResearch出处:ICML被
- 隐私计算技术创新赋能金融数字化转型
岛屿旅人
网络安全金融运维大数据网络安全web安全网络安全
文章目录前言一、金融数据要素流通和价值发挥面临的挑战二、隐私计算技术助推金融场景建设向纵深发展(一)基于可验证秘密共享算法的跨机构数据联合统计(二)基于联邦半监督学习的沉睡客户挖掘模型(三)基于跨域数据校验算法的客户信息准确性验证(四)基于异构隐私计算平台互联互通标准进行跨平台的连通三、未来展望前言近年来,我国大力推动以数据为关键要素的数字经济发展,使得数据成为推动社会进步和经济增长的重要资源和要
- 【自然语言处理】微调 Fine-Tuning 各种经典方法的概念汇总
溢流眼泪
【科研】自然语言处理人工智能
【自然语言处理】微调Fine-Tuning各种经典方法的概念汇总前言请看此微调Fine-TuningSFT监督微调(SupervisedFine-Tuning)概念:监督学习,无监督学习,自监督学习,半监督学习,强化学习的区别概念:下游任务概念:再利用(Repurposing),全参微调(FullFine-Tuning)和部分参数微调(PartialFine-tuning)线性探测(LinearP
- 机器学习---半监督学习简单示例(标签传播算法)
三月七꧁ ꧂
机器学习机器学习
1.使用半监督学习方法LabelSpreading在一个生成的二维数据集上进行标签传播importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.semi_supervisedimportlabel_propagationfromsklearn.datasetsimportmake_circles#generateringwithinnerboxn
- 4种不同类别的机器学习概述
大数据v
人工智能算法机器学习大数据深度学习
导读:机器学习涉及方方面面的内容,包含许多不同类型的算法,其学习方式也不相同。我们将简要介绍这些学习方式及其对应的情景。作者:列奥纳多·德·马尔希(LeonardoDeMarchi),劳拉·米切尔(LauraMitchell)来源:大数据DT(ID:hzdashuju)我们可以根据算法执行学习的方式将它们分为以下不同类别:有监督学习无监督学习半监督学习强化学习01有监督学习有监督学习是目前商业过程
- Improving Language Understanding by Generative Pre-Training
liangdengne_123
深度学习自然语言处理机器学习
今天阅读的是OpenAI2018年的论文《ImprovingLanguageUnderstandingbyGenerativePre-Training》,截止目前共有600多引用。在这篇论文中,作者提出了一种半监督学习方法——GenerativePre-Training(以下简称GPT),GPT采用无监督学习的Pre-training充分利用大量未标注的文本数据,利用监督学习的Fine-tunin
- 2020李宏毅学习笔记—— 10. Semi-supervised Learning(半监督学习)
catcous
机器学习基础课程知识机器学习深度学习人工智能
文章目录摘要1.Introduction1.1WhySemi-supervisedLearning?1.2whySemi-supervisedLearninghelps?2.Semi-supervisedLearningforGenerativeModel2.1SupervisedGenerativeModel2.2Semi-supervisedGenerativeModel3.Low-densi
- 机器学习知识体系总结
qq_36661243
机器学习算法
机器学习知识体系总结什么是机器学习?机器学习体系概括监督学习(SupervisedLearning)十种监督学习方法统计学习方法:模型+策略+学习方法模型策略学习算法无监督学习(UnsupervisedLearning)半监督学习参考所有的知识,无论过去,当下和未来,都可以利用某个单一,通用的学习算法中从数据中获取。–《终极算法》什么是机器学习?机器学习(MachineLearning,ML)是一
- 机器学习---半监督学习(基于分岐的方法)
三月七꧁ ꧂
机器学习机器学习学习人工智能
1.基于分歧的方法与生成式方法、半监督SVM、图半监督学习等基于单学习器利用未标记数据不同,基于分歧的方法(disagreement--basedmethods)使用多学习器,而学习器之间的“分歧”(disagreement)对未标记数据的利用至关重要。1.2协同训练“协同训练”(co-training)[BlumandMitchell,l998]是此类方法的重要代表,它最初是针对“多视图”(mu
- 机器学习---半监督学习(生成式方法)
三月七꧁ ꧂
机器学习机器学习学习人工智能
1.主动学习形式化地看,我们有训练样本集,这l个样本的类别标记(即是否好瓜)已知,称为“有标记”(labeled)样本;此外,还有,这u个样本的类别标记未知(即不知是否好瓜),称为“未标记”(unlabeled)样本。若直接使用传统监督学习技术,则仅有Dl能用于构建模型,Du所包含的信息被浪费了;另一方面,若Dl较小,则由于训练样本不足,学得模型的泛化能力往往不佳。那么,能否在构建模型的过程中将D
- 攻击检测与分类
m0_73803866
分类深度学习人工智能
攻击检测与分类4.2.3.1定义内涵攻击检测与分类的含义是针对各类网络实体及其行为,通过有监督或半监督学习的方式,实现攻击行为的识别,并区分攻击的技战术类型。4.2.3.2技术背景攻击检测与分类是智能化技术与网络安全数据最早结合的应用场景之一。在入侵检测、Web攻击检测、恶意样本及其家族分类、恶意流量检测、恶意邮件识别等多种场景中,为了应对爆炸式增长的数据规模及攻击模式,弥补传统专家规则在时效性、
- PyTorch][chapter 12][李宏毅深度学习][Semi-supervised Linear Methods-1]
明朝百晓生
深度学习pytorch人工智能
这里面介绍半监督学习里面一些常用的方案:K-means,HAC,PCA等目录:K-meansHACPCA一K-means【预置条件】N个样本分成k个簇step1:初始化簇中心点(随机从X中抽取k个样本点作为)Repeat:ForallinX:根据其到(i=1,2,..k)的欧式距离:(代表第n个样本属于第i簇)updatingall问题:不同的初始化参数影响很大.可以通过已打标签的数据集作为,未打
- 第二十八周:文献阅读笔记(弱监督学习)+ pytorch学习
@默然
笔记学习pytorch深度学习人工智能python
第二十八周:文献阅读笔记(弱监督学习)摘要Abstract1.弱监督学习1.1.文献摘要1.2.引言1.3.不完全监督1.3.1.主动学习与半监督学习1.3.2.通过人工干预1.3.3.无需人工干预1.4.不确切的监督1.5.不准确的监督1.6.弱监督学习的创新点2.pytorch学习2.1.对现有模型进行修改2.2.优化器的使用2.3.完整的模型训练套路总结摘要弱监督学习是一种机器学习方法,其训
- 解密人工智能:探索机器学习奥秘
聆风吟_
人工智能机器学习
个人主页:聆风吟系列专栏:网络奇遇记、数据结构少年有梦不应止于心动,更要付诸行动。文章目录前言一.机器学习的定义二.机器学习的发展历程三.机器学习的原理四.机器学习的分类3.1监督学习3.2无监督学习3.3半监督学习3.4强化学习3.5四种分类对比五.机器学习的应用场景六.机器学习的未来发展趋势全文总结前言机器学习(MachineLearning)是一种让计算机通过数据自动学习的技术。它可以让计算
- 【论文笔记】GPT,GPT-2,GPT-3
爱学习的卡比兽
论文NLP论文阅读gpt
参考:GPT,GPT-2,GPT-3【论文精读】GPTTransformer的解码器,仅已知"过去",推导"未来"论文地址:ImprovingLanguageUnderstandingbyGenerativePre-Training半监督学习:无标签数据集预训练模型,有标签数据集微调BERTTransformer的编码器,完形填空,已知“过去”和“未来”,推导中间值论文地址:BERT:Pre-tr
- 第十三章 半监督学习
lammmya
目录一、半监督学习简介二、生成式方法三、半监督SVM四、图半监督学习五、基于分歧的方法六、半监督聚类本章假设给定有标记样本集和未标记样本集,。一、半监督学习简介定义:让学习器不依赖外界交互、自动地利用未标记样本来提升学习性能,就是半监督学习。P294要学习半监督学习,首先我们要了解未标记样本。形式化地看我们有训练样本集,这l个的类别标记(即是否好瓜)已知,称为“有标记样本”;此外,还有,,这u个样
- [PyTorch][chapter 11][李宏毅深度学习][Semi-supervised Learning]
明朝百晓生
深度学习pytorch人工智能
前言:这里面简介一下半监督学习,如何利用未打标签的数据集。重点可以参考一下Graph-basedApproach方案。目录:简介Semi-supervisedLearningforGenerativeModellow-densitySeparationAssumptionEntropy-basedRegularizationsemi-supervisedSVMSmoothnessAssumptio
- 半监督学习笔记:self-training
UQI-LIUWJ
机器学习学习笔记
1半监督学习半监督学习(Semi-SupervisedLearning)是机器学习的一种形式,它结合了监督学习和无监督学习的特点。在半监督学习中,算法同时使用有标签的数据(即已知输出的数据)和无标签的数据(即未知输出的数据)进行训练。这种方法在标签数据稀缺或获取标签成本高昂的情况下特别有用。2self-training算法基本思想是使用已标记的数据来训练一个初始模型,然后使用这个模型对未标记的数据
- 半监督学习
qq_478377515
学习
EfficientTeacher:针对YOLOv5的半监督目标检测实现-知乎CVPR23高分作|半监督目标检测超强SOTA:Consistent-Teacher
- 监督、半监督和无监督学习各自的概念和它们的的区别和联系
qq_45091396
学习
监督学习、半监督学习和无监督学习是机器学习中的三种主要范式,它们有不同的概念、应用和方法。下面是它们的概念、区别和联系:1.监督学习(SupervisedLearning):-概念:监督学习是一种机器学习方法,其中模型通过从已标记的训练数据中学习来进行预测。在监督学习中,训练数据包括输入特征和相应的标签或目标值,模型的任务是学习如何将输入映射到正确的输出。-示例:分类和回归是监督学习的典型示例。例
- 《深度学习之美》读书笔记章三
wenju_song
这一篇文章介绍第三章机器学习的分类。第三章“机器学习”三重门,“中庸之道”趋若人机器学习分为三大类:监督学习,非监督学习,半监督学习3.1监督学习3.1.1感性认知监督学习监督学习:从有标签的训练数据中学习模型,然后给定某个新数组,利用模型预测它的标签。这里的标签可以理解为事物的分类。3.1.2监督学习的形式化描述在监督学习中,根据目标预测变量的类型不同,可以分为回归分析和分类学习。回归分析包括:
- 监督学习、半监督学习、无监督学习三者的本质区别是什么,代表算法有哪些?
神笔馬良
学习算法机器学习
问题描述:监督学习、半监督学习、无监督学习三者的本质区别是什么,代表算法有哪些?问题解答:监督学习、半监督学习和无监督学习是机器学习中的三种主要学习范式,它们的本质区别主要在于训练数据的标签和学习目标。以下是它们的基本概念和代表性算法:监督学习(SupervisedLearning):本质区别:在监督学习中,算法接收带有标签的训练数据,学习输入与输出之间的映射关系。目标是通过学习从输入到输出的映射
- 第三课:GPT
一条大蟒蛇6666
昇思技术公开课学习笔记gpt
文章目录第三课:GPT1、学习总结:GPT出现的原因GPT的方法原理目前存在的问题无监督的预训练优化目标模型结构监督微调课程ppt及代码地址2、学习心得:3、经验分享:4、课程反馈:5、使用MindSpore昇思的体验和反馈:6、未来展望:第三课:GPT1、学习总结:GPT出现的原因未标注的文本数据远多于已标注的文本数据,并且对于不同的下游任务会存在不同的标注方式GPT的方法原理半监督学习基于大量
- Python入门之机器学习(非常详细)篇幅拉满,一般人看不完!
码农必胜客
Python零基础入门python机器学习开发语言
一、什么是机器学习什么是机器学习?机器学习其实就是想让计算机像人一样思考而研发出的计算机理论,目前常用的机器学习有以下几种算法:监督学习supervisedlearning;非监督学习unsupervisedlearning;半监督学习semi-supervisedlearning;强化学习reinforcementlearning;监督学习是不断向计算机提供数据(特征),并告诉计算机对应的值(标
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比