Leetcode169c++

哈希表

class Solution {
public:
    int majorityElement(vector& nums) {
        map hash;
        for(int i=0;ilen/2)return nums[i];
        }
        return 0;
    }
};

第二种解法,Boyer-Moore 投票算法,真的牛逼,给大神跪了。。
本质上, Boyer-Moore 算法就是找 nums 的一个后缀 sufsuf ,其中 suf[0]suf[0] 就是后缀中的众数。我们维护一个计数器,如果遇到一个我们目前的候选众数,就将计数器加一,否则减一。只要计数器等于 0 ,我们就将 nums 中之前访问的数字全部 忘记 ,并把下一个数字当做候选的众数。直观上这个算法不是特别明显为何是对的,我们先看下面这个例子(竖线用来划分每次计数器归零的情况)

[7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 7, 7, 7, 7]

首先,下标为 0 的 7 被当做众数的第一个候选。在下标为 5 处,计数器会变回0 。所以下标为 6 的 5 是下一个众数的候选者。由于这个例子中 7 是真正的众数,所以通过忽略掉前面的数字,我们忽略掉了同样多数目的众数和非众数。因此, 7 仍然是剩下数字中的众数。

[7, 7, 5, 7, 5, 1 | 5, 7 | 5, 5, 7, 7 | 5, 5, 5, 5]

现在,众数是 5 (在计数器归零的时候我们把候选从 7 变成了 5)。此时,我们的候选者并不是真正的众数,但是我们在 遗忘 前面的数字的时候,要去掉相同数目的众数和非众数(如果遗忘更多的非众数,会导致计数器变成负数)。

因此,上面的过程说明了我们可以放心地遗忘前面的数字,并继续求解剩下数字中的众数。最后,总有一个后缀满足计数器是大于 0 的,此时这个后缀的众数就是整个数组的众数。

作者:LeetCode
链接:https://leetcode-cn.com/problems/two-sum/solution/qiu-zhong-shu-by-leetcode-2/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

class Solution {
public:
    int majorityElement(vector& nums) {
        int key=nums[0],count=1;
        for(int i=1;i

你可能感兴趣的:(力扣刷题笔记)